### A Coarse-Level, Rapid Biodiversity Assessment of the Large Islands in Lake Temagami, Ontario

Research Report No. 28

Prepared by Peter Quinby, Michael Henry and Thomas Lee Ancient Forest Exploration & Research Powassan and Toronto, Ontario



December 2002

#### **TABLE OF CONTENTS**

| List of Figures                                   | ii  |
|---------------------------------------------------|-----|
| List of Tables                                    | ii  |
| List of Appendices                                |     |
| Executive Summary                                 |     |
| Introduction                                      | 4   |
| Methods                                           |     |
| Island Definition                                 | 4   |
| Biogeography                                      |     |
| Identifying Stands of Old Growth Forest from Maps | 7   |
| Qualitative Surveys of FRI Non Old Growth Stands  | 7   |
| Quantitative Surveys of FRI Old Growth Stands     | 11  |
| Rare Forest Community Types and Representation    | 11  |
| Rare Plants                                       | 12  |
| Integrity                                         | 12  |
| Old White Cedar                                   | 12  |
| Wildlife                                          | 12  |
| Statistical Analysis                              | 12  |
| Results and Discussion                            | 12  |
| Biogeography                                      | 12  |
| Identifying Stands of Old Growth Forest from Maps | 13  |
| Qualitative Surveys of FRI Non Old Growth Stands  |     |
| Quantitative Surveys of FRI Old Growth Stands     |     |
| Rare Forest Community Types and Representation    |     |
| Rare Plants                                       |     |
| Integrity                                         | 21  |
| •                                                 | 21  |
| Wildlife                                          |     |
| Value for Recreation and Education                |     |
| Future Work                                       |     |
| Islands Conservation Strategy                     |     |
| Wetlands and Lakes                                |     |
| Red Pine Fire Ecology                             |     |
| Wildlife Populations                              |     |
| Old White Cedar                                   |     |
| Literature Cited                                  |     |
| Appendices                                        |     |
| - Tr                                              | - ' |

#### <u>Pg</u>

#### LIST OF FIGURES

| Eigung 1 | Man of the Tomo come Management Unit Charries the Lagetion of the Lange                                                        | Pg |
|----------|--------------------------------------------------------------------------------------------------------------------------------|----|
| Figure I | Map of the Temagami Management Unit Showing the Location of the Large (>20 ha) Islands                                         | 5  |
| Figure 2 | Location of Large (>20 ha) Islands in Lake Temagami, Lake Wasaksina, and Cross Lake within the Temagami Management Unit        | 6  |
| Figure 3 | Location of Large (>20 ha) Islands in Lady Evelyn Lake and Willow Island<br>Lake within the Temagami Management Unit           | 8  |
| Figure 4 | Location of Large (>20 ha) Islands in Lake Obabika and Lake Makobe within the Temagami Management Unit                         | 9  |
| Figure 5 | Location of Large (>20 ha) Islands in Fourbass Lake, Rabbit Lake, and Jumping Cariboo Lake within the Temagami Management Unit | 10 |

#### LIST OF TABLES

| Table 1  | Significant Correlations between Geographic and Biological Variables for the Large Islands in the Temagami Management Unit                            | 13 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2  | Old-Growth Forest Stands on Large Islands on Lake Temagami as Determined from Data and Criteria Provided by the Ontario Ministry of Natural Resources | 14 |
| Table 3  | Summary of FRI Old-Growth Stand Composition and Abundance for all Islands on Lake Temagami                                                            | 15 |
| Table 4  | Summary of Qualitative Surveys of FRI Non-Old Growth Crown Land Stands                                                                                | 16 |
| Table 5  | A Comparison of Ages of FRI Old-Growth Stands Based on Forest Resource<br>Inventory Map Data and Tree Cores                                           | 17 |
| Table 6  | Correlations between Tree Core Age and Coarse Woody Debris                                                                                            | 18 |
| Table 7  | Ecosite Area in the Temagami Management Unit and on the Large Islands on Lake Temagami                                                                | 19 |
| Table 8  | Representation Comparison of the Large Islands on Lake Temagami with other Large Islands in the Temagami Management Unit                              | 20 |
| Table 9  | Rare Plant Species on Some of the Large Islands in Lake Temagami                                                                                      | 20 |
| Table 10 | 0 Historical Cutting on Cattle Island                                                                                                                 | 21 |
| Table 1  | 1 Old Cedar Survey                                                                                                                                    | 21 |

#### LIST OF APPENDICES

|                                                                                                                                                                                                                                                          | Pg |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Appendix 1 Ecosites, FRI Stands, Land Use, Topography, and Transect Locations on Bell Island (No. 25) in Lake Temagami within the Temagami Management Unit                                                                                               | 27 |
| Appendix 2 Ecosites, FRI Stands, Land Use, Topography, Transect Locations, Plot Locations, and Trails on Temagami Island (No. 234) and Temagami Island West (No. 725) in Lake Temagami within the Temagami Management Unit                               | 28 |
| Appendix 3 Ecosites, FRI Stands, Land Use, Topography, Transect Locations, and Plot Locations on Highrock Island (No. 312) in Lake Temagami within the Temagami Management Unit                                                                          | 29 |
| Appendix 4 Ecosites, FRI Stands, Land Use, Topography, Transect Locations, Plot Locations, and Other Features on Papoose Island (No. 388) in Lake Temagami within the Temagami Management Unit                                                           | 30 |
| Appendix 5 Ecosites, FRI Stands, Land Use, Topography, Transect Locations, and Plot Locations on Island No. 537 & Island No. 472 in Lake Temagami within the Temagami Management Unit                                                                    | 31 |
| Appendix 6 Ecosites, FRI Stands, Land Use, Topography, Transect Locations, and<br>Plot Locations on Narrows Island (No. 660) & Camp Chimo Island (No. 665) in Lake<br>Temagami within the Temagami Management Unit                                       | 32 |
| Appendix 7 Ecosites, FRI Stands, Land Use, Topography, Transect Locations, and<br>Stump Survey Location on Cattle Island (No. 849) in Lake Temagami within the<br>Temagami Management Unit                                                               | 33 |
| Appendix 8 Ecosites, FRI Stands, Land Use, Topography, Transect Locations, and<br>Plot Locations on Alexander Island (No. 992) in Lake Temagami within the Temagami<br>Management Unit                                                                   | 34 |
| Appendix 9 Ecosites, FRI Stands, Land Use, Topography, Transect Locations, and<br>Other Features on Canadian Adventure Camp Island (No. 1061), Island No. 1091, and<br>Island No. 1088 in Lake Temagami within the Temagami Management Unit              | 35 |
| Appendix 10 Ecosites, FRI Stands, Topography, Transect Locations, and Other Features on Island No. 1063 in Lake Temagami within the Temagami Management Unit                                                                                             | 36 |
| Appendix 11 Ecosites, FRI Stands, Topography, Transect Locations, and Plot<br>Locations on Red Pine Island (No. 1173) in Lake Temagami within the Temagami<br>Management Unit                                                                            | 37 |
| Appendix 12 Ecosites, FRI Stands, Topography, Land Use, Transect Locations, Plot Locations, and Other Features on Beaver Island (No. 1205), Deer Island (No. 1199), and Horseshoe Island (No. 1197) in Lake Temagami within the Temagami Management Unit | 38 |
| Management Unit                                                                                                                                                                                                                                          | 20 |

|                                                                                                                                | <u>Pg</u> |
|--------------------------------------------------------------------------------------------------------------------------------|-----------|
| Appendix 13 An Ecological Context for Old Growth Definition in Ontario                                                         | 39        |
| Appendix 14 Summary of Features for Large Islands (>20 ha) on Lake Temagami                                                    | 40        |
| Appendix 15 Summary of Features for Large Islands (>20 ha) on Lakes other than Lake Temagami in the Temagami Management Unit   | 41        |
| Appendix 16 Summary of Features for Forest Resource Inventory Stands on Large Islands (>20 ha) in the Temagami Management Unit | 42        |
| Appendix 17 Coarse Woody Debris for Quantitative Field Plots                                                                   | 46        |
| Appendix 18 Plant Species Inventory                                                                                            | 47        |
| Appendix 19 Common and Scientific Plant Names                                                                                  | 51        |
| Appendix 20 Photographs                                                                                                        | 54        |

#### **EXECUTIVE SUMMARY**

1. Continued logging of ancient forests and increasing recreational activity has raised concern over the conservation of the many large and relatively pristine islands on Lake Temagami, which is the largest lake in the Temagami region of central Ontario. The goal of this study was to identify, assess, and document the significant and valuable biodiversity features of all the large islands (>20 ha) in Lake Temagami, which also involved assessing large islands throughout the other portions of the Temagami Management Unit (TMU). These features included primarily old-growth forests, pristine landscapes, rare plants, and rare forest communities.

2. In total there are 39 large islands in the TMU and 20 are located in Lake Temagami. Even at a coarse scale, island biogeographical phenomena were evident in the results of this study. Island "isolation" was defined as the greatest distance of open water between any two islands in a chain of islands that is located between an island and the mainland, whereas "distance to shore" is simply the shortest straight-line distance between the island and the mainland. No significant relationships were found between island biology and distance to shore, however, we did find that as island isolation increased, mean stand age, white cedar abundance, and white pine abundance decreased, and balsam fir and poplar abundance increased. These relationships in combination with the lack of relationship between island biology and distance to shore suggest that the stepping-stone effect is operative even in a mid-sized freshwater lake. In other words, it appears that the age and species of trees on an island are affected more by the biology of nearby islands that act as sources of colonization than by the biology of the closest portion of mainland. In addition, we found that mean stand age, abundance of white pine, and island area all increase as island perimeter increases. Although island area was not directly related to any of the biological variables, through its association with perimeter it may also be positively associated with mean stand age and white pine abundance. In general, larger islands have greater species richness.

3. Using criteria developed by the Ontario Ministry of Natural Resources (OMNR) combined with Forest Resource Inventory (FRI) map data it was determined that (a) 11 of the Lake Temagami islands (67% by area) are classified as >95% old growth, (b) three of the islands (8% by area) have no old growth at all, and (c) six islands (27% by area) have a partial component of old growth.

4. Of the 17 islands with FRI old-growth forest, six are dominated by old-growth white pine forest, five are dominated by old-growth white birch forest, three are dominated by old-growth red pine forest, two are dominated by old-growth white cedar forest, and one is dominated by old-growth poplar forest.

5. There are a total of 30 white pine-dominated stands (33.9% of all island area) and ten red pinedominated stands (13.1% of total island area) that are classified as old growth based on the OMNR criteria and data. Old-growth red and white pine forests are among the world's most endangered ecosystems. Together, old-growth red and white pine dominated stands make up 47.0% of the FRI oldgrowth forest compared with 27.7% for all other FRI old-growth forest types combined.

6. Those island stands that were not classified as FRI old growth were aged using field data and all were found to qualify as old-growth forest according to OMNR criteria. Stand classification changed to old growth when ages from tree cores were used because FRI maps tend to underestimate ages of the island stands.

7. Our plot-based, quantitative results support the hypothesis that the coarse woody debris (CWD, includes both snags and logs) component of old-growth forests on the islands increases in volume with increasing stand age. Many studies have documented the importance of CWD as habitat for both rare and common species of wildlife. These islands have some of the oldest trees in the province with many over 200 years old - the oldest found being a 394-year old white pine. Our results show that as the forest

stands on the islands get older, there is also an increase in the amount of white pine snags, red pine snags, all conifer snags combined, all snags combined, red pine logs, white cedar logs, all conifer logs combined, and all coarse woody debris combined. A portion of the forest stands on these islands have some of the highest CWD volumes found in any old-growth forests in the Temagami region as well as in the Province of Ontario.

8. A total of 13 different forest community types occur on the large islands in Lake Temagami. Of these, ten are rare (<5% cover in the TMU) and make up a total of 1,145 ha or 57% of the total study area (2001 ha). Five community types on these islands occur in very high concentrations including white cedar-lowland hardwood, white pine-red pine-white spruce-white birch-trembling aspen, white pine-largetooth aspen-red oak, red pine, and white pine-red pine. Most of these five community types include at least some endangered old-growth red and white pine forest.

9. Without even considering natural heritage values other than forest community rarity, this high concentration of five rare community types as a group is an excellent candidate for protection. By including these community type occurrences together in the same reserve, representation would be maximized by including numerous community types and integrity would also be maximized by creating one larger connected reserve rather than several smaller separate reserves. Additional legal protection of these endangered old-growth red and white pine ecosystems has been called for by the OMNR.

10. Relative to stands on the large islands throughout the remainder of the TMU, stands on large islands in Lake Temagami are 34% older, have 114% more white pine, have 408% more red pine, have 10% higher tree species richness per stand, and have 307% less balsam fir. The largest water gap in the chain of islands that connects each large island to the mainland is 67% less than those in lakes throughout the remainder of the TMU. This difference in isolation suggests that the Lake Temagami islands are biogeographically different from large islands elsewhere in the TMU. This is likely due to the occurrence of many smaller islands in Lake Temagami which act as stepping-stones or connections to the mainland.

11. Nine rare plant species were found on a subset of the large islands in Lake Temagami.

12. The extent of non-industrial cutting varied on these islands from rare stumps to intensive cutting, although all islands appear to be mostly pristine. The results of one survey of an area of intensive cutting on Cattle Island showed that the mean basal area of the area cut is 83% of the basal area of the remaining trees. This intensity of cutting is comparable to a 45% industrial shelterwood cut.

13. Old cedars were found on rocky shoreline sites where they are protected from fire and where their roots are confined, creating a bonsai effect. The oldest white cedar had 498 growth rings, however, due to heart rot it was impossible to determine how much older it actually was when it died. With its many islands and cliffs, Temagami may be comparable to the Niagara Escarpment in its potential for supporting extremely old cedars. It is highly likely that additional searching in Temagami will uncover cedars with more than 498 growth rings. Further research is needed to determine the extent of ancient cedars and to characterize their habitat.

14. We found evidence of a large population of deer on Papoose Island and we observed that moose are using some islands and not others. Signs of pileated woodpecker, beaver, pine marten, and black bear were also observed and sightings of broad-winged hawk, merlin, and other bird species were recorded. Two loon nests located in small sheltered bays were found on two of the large islands.

15. This study focused on less than 2% of the 1,000+ islands in Lake Temagami and for those islands that were studied, only a coarse-level rapid survey approach was used. Although this approach is typically the first step in developing a conservation strategy, these results provide only a partial

understanding of the biodiversity and ecological processes on these islands. If long-term conservation of the islands in Lake Temagami is desired, a complete ecological inventory (geology, soils, plants, insects, birds, mammals, wetlands, streams, lakes, cliffs, etc.) of the islands should be the ultimate goal. Because of the enormity of this task, however, it will be necessary to develop an inventory-based research plan that can be implemented in stages over the course of many years. Central to this plan would be (1) identification and ranking of all threats to the ecological integrity of the islands, (2) development of a data collection system that facilitates and integrates involvement by the local community, professional conservation scientists, and academic experts including student projects, and (3) creation and maintenance of an information database so that knowledge will not be lost, can be passed on from one database manager to the next, and can be made accessible to interested parties.

16. The abundant and dense red pine forests on the large islands in Lake Temagami provide an excellent opportunity to conduct forest fire studies. The uninhabited islands are ideal sites for fire history studies, prescribed burn research, and for experimenting with other types of understory and ground litter removal techniques. Results of these studies could be used to improve red pine regeneration in stands that are managed for fiber production as well as those that are managed for their old-growth characteristics.

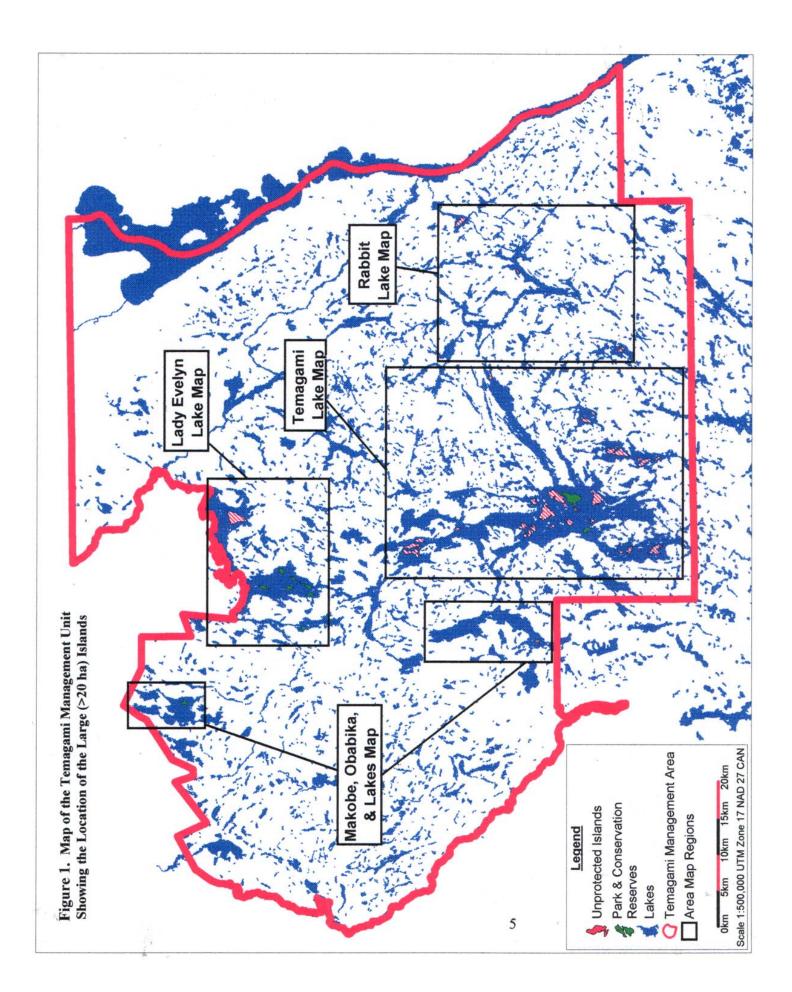
17. With its myriad of islands, Lake Temagami is an ideal natural laboratory for the study of island biogeography. Of particular interest are studies that relate size and isolation of islands to their wildlife populations. These studies could provide insight into forest fragmentation theory and would be applicable to forest conservation issues throughout the TMU and beyond where fragmentation has occurred due to industrial forestry. These studies need not be limited to any one species or group of species.

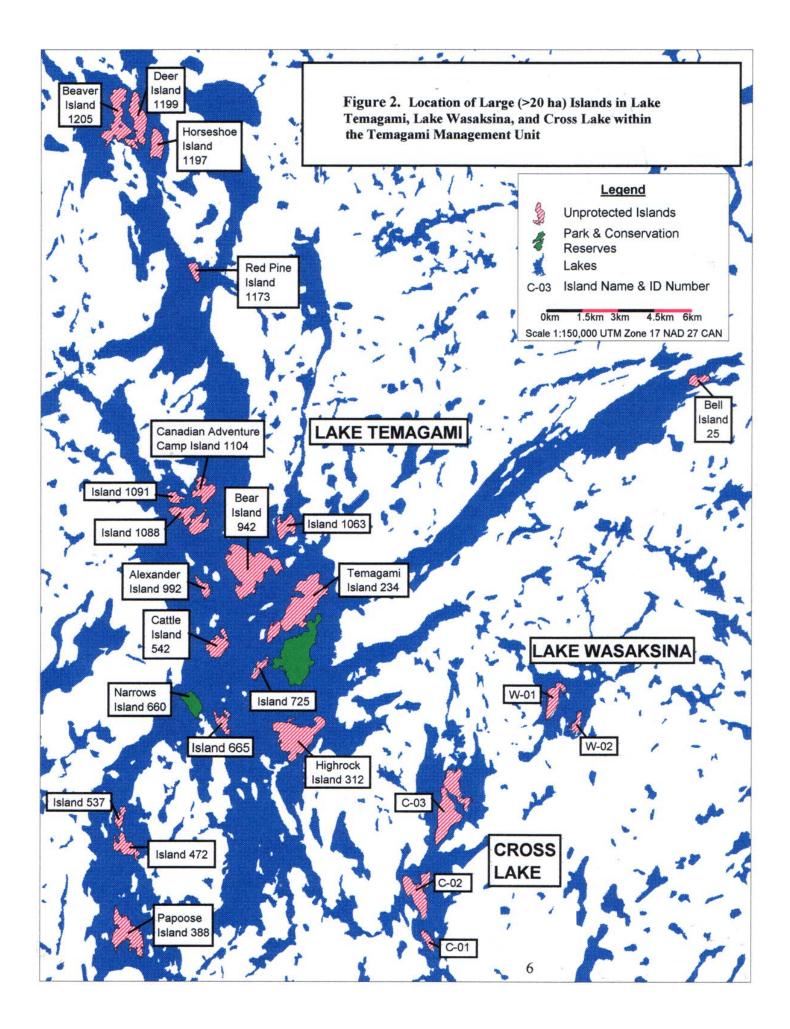
18. Almost 100% of the large islands in Lake Temagami are composed of pristine old-growth forests. Roughly half of these forests are endangered red and white pine ecosystems, more than half of them are rare throughout the TMU, and numerous rare plants are found in them. Given the high volumes of CWD in many of these island forests and the unique biogeography of island ecosystems, it is highly likely that an animal community distinct from mainland communities exits on these islands. Their natural heritage value is equivalent to any of the protected areas in the TMU.

#### **INTRODUCTION**

Relative to the study of oceanic islands that have been studied for more than a century (Darwin 1859, Wallace 1902, MacArthur and Wilson 1967, Carlquist 1974, Williamson 1981, Whittaker 1998), and continental habitat islands that have been studied for more than a half century (Curtis 1956, Harris 1984), the study of freshwater islands has been significantly neglected. For example, in *Island Biology*, Carlquist (1974) speaks only of freshwater lakes as a type of "aquatic" island, and in the most recent text addressing the biology and geography of islands, Whittaker (1998) does not explicitly include freshwater islands in his island classification scheme. Despite a lack of focus on freshwater islands by the research community, continued logging of ancient forests and increasing recreational activity has raised concern over the conservation of the many large and relatively pristine islands on Lake Temagami - the largest lake in the Temagami region of central Ontario (Figs. 1 and 2).

To date, only two of these islands have been protected for their biodiversity (natural heritage) value – Narrows Island and Temagami Island North (OMNR 2002a, 2002b). However, neither of the *Statements of Conservation Interest* (OMNR 2002a, 2002b) prepared for these two islands includes information derived from field surveys (e.g., rare plants, actual vs. estimated tree ages, etc.) nor was their selection as reserves based on a comprehensive comparative analysis of all the large islands in Lake Temagami. Thus, the values of these two island reserves relative to the other large islands in the lake are currently unknown. The goal of this study was to identify, assess, and document the significant and valuable biodiversity features of all the large islands (>20 ha) in Lake Temagami. These features included primarily old-growth forests, pristine landscapes, rare plants, and rare forest communities. The value of these features for recreation, education, and scientific research are also briefly addressed.


#### **METHODS**


#### **Island Definition**

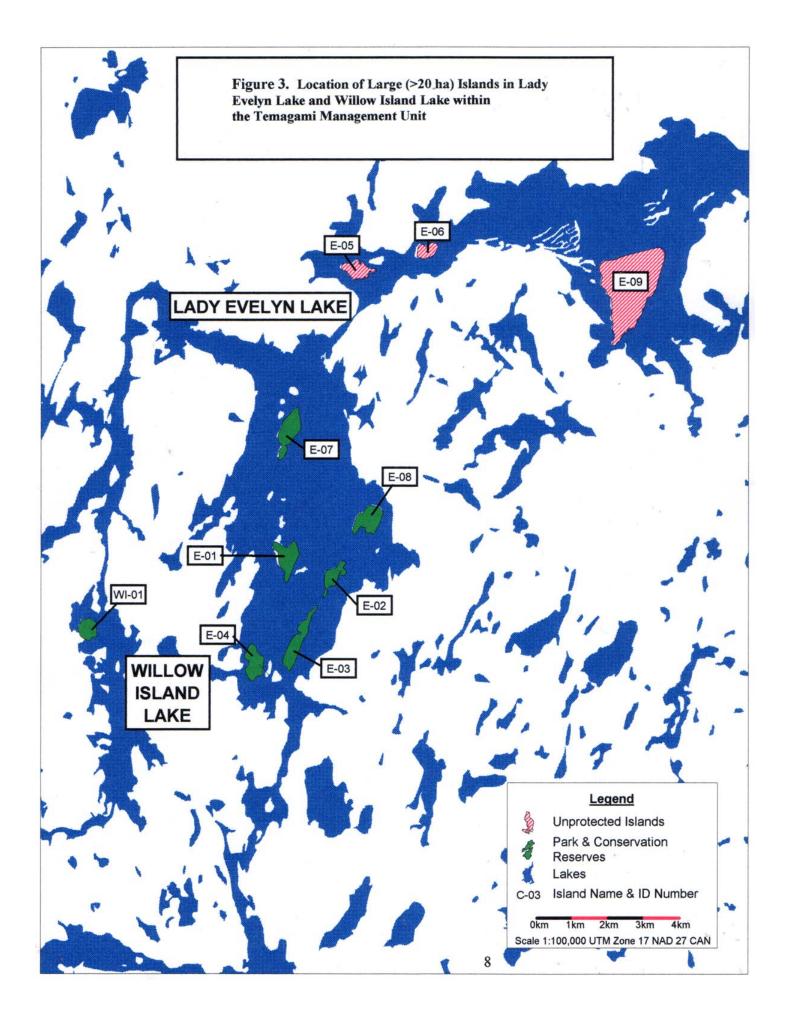
All islands greater than 20 ha in Lake Temagami were assessed for ecological and geographic features, and all islands larger than 20 ha outside of Lake Temagami but within the Temagami Management Unit (TMU) were also assessed for many of the same features in order to make basic comparisons with the Lake Temagami islands. In total, 20 islands in Lake Temagami (Appendices 1-12; a large-scale map of Bear Island was not included because it does not have any crown land) and 19 islands outside of Lake Temagami were included in this study (Figs. 2-5). Islands in Lake Temagami were differentiated from mainland whenever water separated the two according to the *Lake Temagami Shoal Map* (Temagami Lakes Association 2001). For islands that were very close to the mainland, field checks were made to confirm island status. The Lake Temagami island identification numbers shown on the Shoal Map were used throughout this study. To distinguish the islands outside of Lake Temagami, the 1:20,000 topographic maps were used.

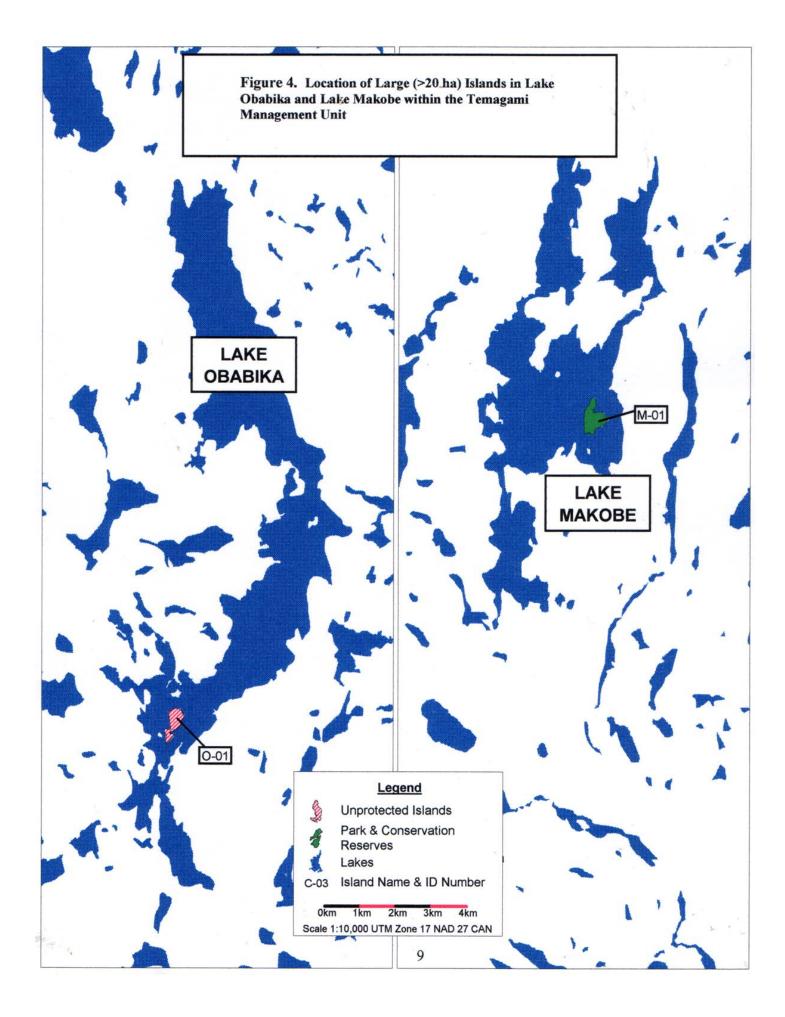
#### **Biogeography**

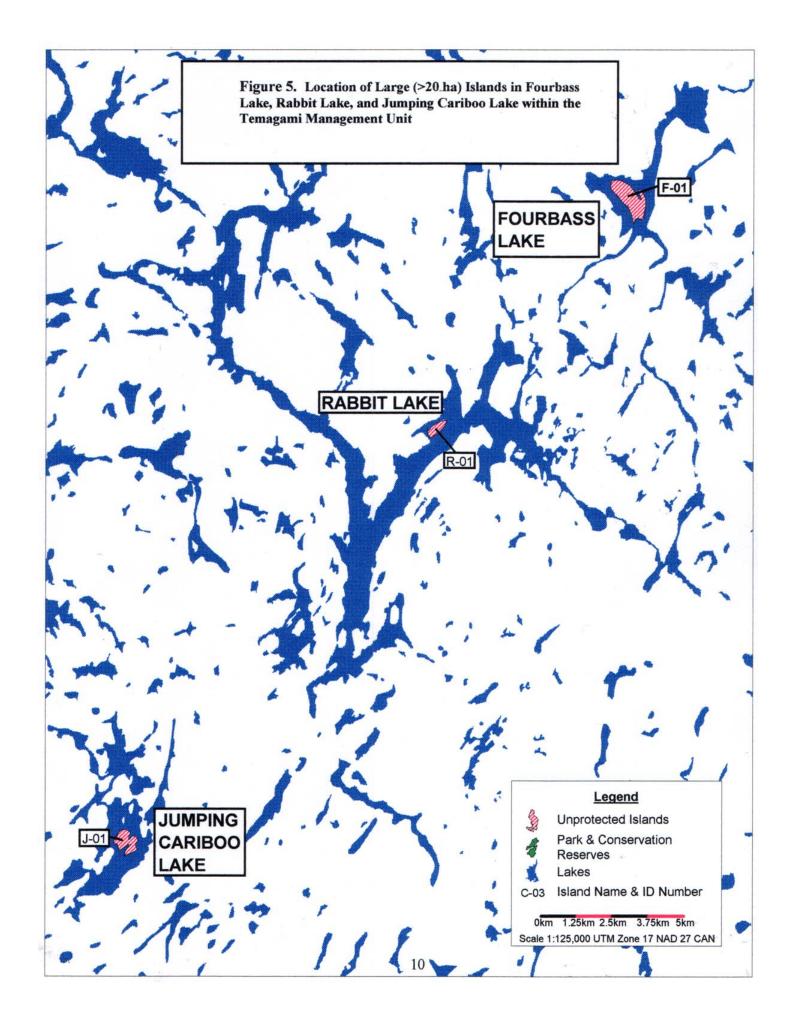
Some fundamental biogeographical attributes of all 39 islands were assessed and analyzed. Area and perimeter were calculated using geographic information system software (MapInfo). Shape was also calculated for each island and is defined as island perimeter divided by area. Distance from shore was measured as the shortest straight-line distance from each island to the mainland. Two measures were used to account for the effect of other islands which may act as pathways of colonization for an island, know as the stepping stone effect (MacArthur and Wilson 1967). Isolation was defined as the greatest distance of open water between any two islands in a chain of islands that occurs between an island and the






mainland. This measure, however, does not account for the number of water gaps that must be crossed by an organism in a particular island chain to travel from the mainland to the destination island. Thus, the number of steps was defined as the total number of island water gaps between the mainland and the destination island. These geographic island variables were related to the mean age of island forests and the abundance of all tree species on the islands as assessed from Forest Resource Inventory (FRI) Maps (Ontario Ministry of Natural Resources 1991)


#### **Identifying Stands of Old-Growth Forest from Maps**


Since the landscape of the TMU is dominated by forest ecosystems, the FRI Maps for the area were used to assess some basic forest stand attributes, including tree composition and age. Using the FRI age data in combination with the OMNR publication, Old Growth Forest Definitions for Ontario (Uhlig et al. 2001), it was possible to characterize stands on the Lake Temagami islands as either "FRI old growth", or "FRI non-old growth". Because these definitions are categorized by ecosite in this OMNR publication, we classified each of the FRI stands on the Lake Temagami islands by ecosite using the Detailed Ecosites for the Temagami Management Unit Area Map (Ontario Ministry of Natural Resources 2002). The minimum old growth age for each ecosite type is listed in Table 3 of the OMNR's Old Growth Definitions report (Uhlig et al. 2001) (see Appendix 1). Using the "species-specific old growth onset ages" available from this table, the dominant tree species in the FRI stand, and the age of each FRI stand (in 2002), we were then able to determine which stands qualify as old growth and which do not. For example, an FRI stand dominated by white pine that is classified within Ecosites 11-14, would have a species-specific old growth onset age of 150 years. Because aerial photography for the FRI maps was taken in 1989, stand ages on these maps were adjusted to 2002 ages by adding 13 years. All stands on the Lake Temagami islands which did not meet OMNR's minimum age requirement for old growth were surveyed using a qualitative approach. A sub-set of those stands that did meet OMNR's minimum age requirement for old growth were sampled using a quantitative approach.

#### Qualitative Surveys of FRI Non-Old Growth Stands

Transects were placed through each forest stand at an intensity of 40 linear meters of transect per hectare of stand, and were located to sample the topographic (or habitat) variation of the stand. For each 150 meters of transect (equal to 3.75 hectares of stand area), the largest tree in line of sight was aged using an increment borer, and a species list was compiled of all vascular plant species encountered along the transect. Plant species nomenclature is based on Chambers et al. (1996). When selecting trees to age, we generally avoided species known to be very fast growing and therefore probably not very old for their size, and trees that appeared likely to have heart rot. In cases where trees with heart rot were unavoidable, some additional years were added to the ring count to compensate for the missing years. The estimate for these additional years was based on the assumptions that trees grow faster in their younger years (near the center) and that the increment borer causes some compression of the core so that the length of the extracted core that includes the pith will never be the exact radius of the tree. Thus, the following formula was used to estimate the additional years: [(radius of tree - length of core - 5cm) x (the number of rings/cm counted) x  $(\frac{1}{2})$ ]. It should be noted that ages estimated using this formula were very similar to the complete ring count ages of nearby trees of the same species and similar diameter, however, most trees cored for age estimates did not have heart rot. In addition, anecdotal observations were recorded along transects including the presence of trails, evidence of historical logging or mining, evidence of wildlife activity, etc. Private lands and Bear Island were not visited for any part of the study.







#### **Quantitative Surveys of FRI Old-Growth Stands**

Relative to other parts of the central Ontario region, some of the oldest forest stands are found on the large islands in Lake Temagami (Isles 1990, Quinby et al. 1996). And, relative to young forests, older forests (or old-growth forests) generally have higher quantities of coarse woody debris (snags and logs), which are directly beneficial as habitat for many species of wildlife and essential for some species (Hunter 1990, Davis 1996). Given that greater quantities of coarse woody debris generally provides greater amounts of valuable wildlife habitat, we theorize that the oldest of the old-growth forests will have the greatest quantity of coarse woody debris and therefore will provide the greatest amount of high quality wildlife habitat. The purpose of this component of the study, therefore, was to test the hypothesis that the oldest of the old-growth forests on the Lake Temagami islands have the greatest quantity of coarse woody debris.

To test this hypothesis, a subset of stands which met the OMNR's old growth criteria was sampled for stand age, trees, snags, and logs in the field. To ensure that our sample was representative of the variety of forest community types, these stands were classified by ecosite types, at least one stand in each ecosite was sampled, and a minimum of three plots were sampled in each stand. For those ecosites with more than three plots, samples were apportioned among ecosite types relative to the area occupied by each ecosite type for those stands identified as FRI old growth. The exception to this was the most common type, ecosite 21, which was under-represented in the sample due to time constraints. Because age was the key independent variable in this study, stands representing a wide range of ages were chosen for sampling. When a diversity of stand composition existed within one ecosite type, stands were selected which were more uniform in composition rather than more variable so that the effect of age could me more easily isolated. Where possible, stands within an ecosite were selected from different islands, however logistics were also a factor.

Within each sampled stand, transects were located in order to sample the topographic variation of the stand. A list of all vascular plant species encountered along the transect was compiled. Every 150 meters along the transect a 40 m x 10 m plot was established. Within each plot we recorded the diameter at breast height (dbh) and species of all trees and snags, and the length and diameter at each end of all logs. Two trees occurring within a 50-meter radius of each plot were aged using an increment borer. Anecdotal observations were also recorded.

#### **Rare Forest Community Types and Representation**

The *Detailed Ecosites for the Temagami Management Unit Area Map* (Ontario Ministry of Natural Resources 2002) was used to determine the ecosite composition of each island over 20 ha in Lake Temagami. Knowing the abundance of each ecosite throughout the entire TMU it was possible to identify the rare ecosites in the TMU, which were defined as those with an aerial extent of 5% or less. Using these rare ecosite data, it was then possible to determine which of the rare ecosites in the TMU occur on the Lake Temagami islands greater than 20 ha and the extent of each.

Using both geographic variables and biological variables obtained from FRI maps, the Lake Temagami islands were compared with the rest of the large islands in the TMU. These variables included island size, island perimeter, island shape, distance to shore, isolation, number of steps, the abundance of all tree species assessed on FRI maps, the number of tree species present in each stand, and the number of stands on each island. The results of these variable comparisons were used to characterize differences in island features that are represented by each group of islands.

#### **Rare Plants**

The list of vascular plant species that was compiled from both the qualitative and quantitative surveys was compared with a list of rare plants for the TMU (White 1990, Quinby 1996) to produce an initial list of rare plant species that are found on the 20 largest islands in Lake Temagami. This list is based on only a very small sample of each island and therefore, represents only a portion of all rare plants that occur on these islands.

#### Integrity

Evidence of historical logging was recorded whenever it was encountered during the surveys that were conducted to assess other island features. A detailed inventory of a logged area was conducted on Cattle Island as an example of severe human disturbance. This inventory consisted of two 10 x 40 m plots in which all living trees, standing dead snags, and cut stumps were inventoried. Stumps were recorded by measuring the diameter across the top.

#### **Old White Cedar**

Old, dead white cedars were located along the shoreline of islands where field work was done or on other islands in the vicinity of sampled islands. Two of the islands where old cedars were aged were less than 20 ha in size and therefore were not included in other aspects of this study. Trees were cut and aged by counting growth rings on cross sections.

#### Wildlife

The presence of wildlife species and the signs of wildlife were observed and recorded.

#### **Statistical Analysis**

The software program Minitab was used to perform statistical analysis. Pearson product-moment correlations were used to examine relationships between and among variables and the t-test was used to identify mean differences with statistical significance.

#### **RESULTS AND DISCUSSION**

#### Biogeography

An ecological study of islands would not be complete without considering their biogeography. The biogeographical analysis revealed (1) that island isolation is negatively correlated with mean stand age (-.4674), white cedar (-.3726), and white pine (-.4455), and positively correlated with balsam fir (.4252) and poplar (.4123) and (2) that island perimeter is positively correlated with mean stand age (.3947) and white pine (.4015) (Table 1, also see Appendices 14 and 15). The correlation of isolation with mean stand age and four tree species versus the lack of correlation between distance to shore and these same variables suggests that the stepping stone effect, which has been addressed in the context of oceanic islands, is operative even in a mid-sized freshwater lake. MacArthur and Wilson (1967) theorized that for the average plant or animal, "dispersal across gaps of more than a few kilometers is by stepping stones wherever habitable stepping stones of even the smallest size exist". Our results indicate that the same principles may operate even on a scale of hundreds of meters. Correlations between isolation and tree species abundance are likely due to the size and shape of the seeds, the mechanism of dispersal (e.g.,

wind, birds), and the timing of seed release for each of the various species. In a reservoir in Georgia, Kadmon-Ronen and Pulliam (1995) found that logged islands had significantly fewer species of woody plants than unlogged islands with similar distances from the mainland. They also found that the mechanism of seed dispersal explained the greatest amount of variation in species' ability to recolonize the logged islands. Milne and Forman (1986) found that species richness decreased on peninsulas in Maine with increasing distance from the mainland.

| Table 1. Significant Correlations between Geographic andBiological Variables for the Large Islands in the TemagamiManagement Unit (total of 39 islands; p<.05; ns = not statisticallysignificant) |                      |               |        |                |               |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|--------|----------------|---------------|--|--|--|--|--|--|
| Geographic                                                                                                                                                                                        | Biological Variables |               |        |                |               |  |  |  |  |  |  |
| Variables                                                                                                                                                                                         | Mean<br>Stand Age    | Balsam<br>Fir | Poplar | White<br>Cedar | White<br>Pine |  |  |  |  |  |  |
| Isolation                                                                                                                                                                                         | 4674                 | .4252         | .4123  | 3726           | 4455          |  |  |  |  |  |  |
| Perimeter                                                                                                                                                                                         | .3947                | ns            | ns     | ns             | .4015         |  |  |  |  |  |  |

Island perimeter was positively correlated with both mean stand age (.3947) and the abundance of white pine (.4015). Although island area was not directly correlated with any of the biological variables, through its association with perimeter (r=.95, p<.000) it also may be positively associated with mean stand age and white pine abundance. In contrast to perimeter effects on island biota, area effects have been documented much more extensively. In general, larger islands have greater species richness on both oceanic islands (e.g., Whittaker 1998) and on freshwater islands (Dean and Bond 1990, Tangney et al. 1990).

These results involving island area may reflect, at least in part, the differences between the 20 large islands found on Lake Temagami, which has its own unique forest composition and history, and the 19 islands found elsewhere in the TMU. For example, isolation is significantly lower for islands in Lake Temagami (mean = 57 m) versus those throughout the remainder of the TMU (mean = 95 m). Additional differences between the Lake Temagami Islands and the other TMU islands are addressed in the section on representation.

#### **Identifying Stands of Old-Growth Forest from Maps**

Based on OMNR criteria, (1) 11 of the Lake Temagami islands (67% by area) are classified as >95% oldgrowth, (2) three of the islands (8% by area) had no old-growth at all, and (3) six islands (27% by area) have a partial component of old-growth (Table 2; see also Appendix 3 for additional FRI information). Of the 17 islands with FRI old growth forest, six are dominated by old-growth white pine forest, five islands are dominated by old-growth white birch forest, three islands are dominated by old-growth red pine forest, two islands are dominated by old growth white cedar forest, and one island is dominated by old growth poplar forest. There are a total of 30 white pine-dominated stands (33.9% of all island area) that are designated old growth based on the OMNR data and 10 red pine-dominated stands (13.1% of total island area) (Table 3). Together, old-growth red and white pine dominated stands make up 47.0% of the FRI old-growth forest compared with 27.7% for all other old growth forest types combined. Table 2. Old-Growth Forest Stands on Large Islands on Lake Temagami asDetermined from Data and Criteria Provided by the Ontario Ministry of NaturalResources

| Resour        | ces            |                        |                                |                  |                             |                |                       |
|---------------|----------------|------------------------|--------------------------------|------------------|-----------------------------|----------------|-----------------------|
| lsland<br>No. | Island<br>Name | Island<br>Area<br>(ha) | Community<br>Dominance<br>Type | No. of<br>Stands | Total<br>Stand<br>Area (ha) | % of<br>Island | % of<br>Old<br>Growth |
| 25            | Bell           | 29                     | none                           | 0                | 0                           | 0.0            | 0.0                   |
|               | 1              | 1                      |                                | 1                |                             | 1              | 1                     |
|               |                |                        | White Pine                     | 11               | 288                         | 55.2           | 57.9                  |
|               |                |                        | Sugar Maple                    | 3                | 89                          | 17.0           | 17.9                  |
| 234           | Temagami       | 522                    | Poplar                         | 4                | 54                          | 10.3           | 10.9                  |
|               |                |                        | Yellow Birch                   | 2                | 34                          | 6.5            | 6.8                   |
|               |                |                        | White Cedar                    | 1                | 19                          | 3.6            | 3.8                   |
|               |                |                        | Red Pine                       | 1                | 13                          | 2.5            | 2.6                   |
|               |                |                        | Total                          | 22               | 497                         | 95.2           | 100.0                 |
|               | 1              | 1                      | 1                              | 1                |                             | 1              | 1                     |
| 040           | L Patrice and  | 004                    | White Birch                    | 1                | 46                          | 22.5           | 57.5                  |
| 312           | High rock      | 204                    | Red Pine                       | 1                | 34                          | 16.7           | 42.5                  |
|               |                |                        | Total                          | 6                | 80                          | 39.2           | 100.0                 |
|               |                |                        |                                |                  |                             |                |                       |
|               |                |                        | White Pine                     | 3                | 92                          | 69.2           | 69.2                  |
| 388           | Papoose        | 133                    | Yellow Birch                   | 1                | 21                          | 15.8           | 15.8                  |
|               |                |                        | White Cedar                    | 1                | 20                          | 15.0           | 15.0                  |
|               |                |                        | Total                          | 5                | 133                         | 100.0          | 100.0                 |
|               |                |                        |                                |                  |                             |                |                       |
|               |                |                        | White Cedar                    | 5                | 35                          | 61.4           | 61.4                  |
| 472           |                | 57                     | White Pine                     | 2                | 22                          | 38.6           | 38.6                  |
|               |                |                        | Total                          | 7                | 57                          | 100.0          | 100.0                 |
|               |                |                        |                                |                  |                             |                |                       |
| 537           |                | 25                     | White Cedar                    | 1                | 25                          | 100.0          | 100.0                 |
|               |                |                        |                                |                  |                             |                |                       |
| 660           | Narrows        | 53                     | Red Pine                       | 3                | 53                          | 100.0          | 100.0                 |
|               |                |                        |                                |                  |                             |                |                       |
| 665           |                | 37                     | Poplar                         | 4                | 37                          | 100.0          | 100.0                 |
|               |                |                        |                                |                  |                             |                |                       |
| 725           |                | 29                     | White Birch                    | 2                | 29                          | 100.0          | 100.0                 |
|               |                |                        |                                |                  |                             |                |                       |
| 849           | Cattle         | 68                     | White Birch                    | 3                | 25                          | 36.8           | 100.0                 |
|               |                |                        |                                |                  |                             |                |                       |
|               |                |                        | White Pine                     | 4                | 106                         | 42.9           | 70.7                  |
| 964           | Bear           | 247                    | White Birch                    | 1                | 22                          | 8.9            | 14.7                  |
|               |                |                        | Red Pine                       | 1                | 12                          | 4.9            | 8.0                   |
|               |                |                        | White Cedar                    | 1                | 10                          | 4.0            | 6.7                   |
|               |                |                        | Total                          |                  | 150                         | 60.7           | 100.0                 |
|               |                |                        |                                |                  |                             |                |                       |
| 992           | Alexander      | 27                     | White Birch                    | 4                | 27                          | 100.0          | 100.0                 |
|               |                |                        |                                |                  |                             |                |                       |
| 1063          |                | 58                     | White Pine                     | 2                | 29                          | 50.0           | 100.0                 |
|               |                |                        |                                |                  | -                           |                |                       |

# Table 2. Old-Growth Forest Stands on Large Islands on Lake Temagami asDetermined from Data and Criteria Provided by the Ontario Ministry of NaturalResources (continued)

| Resources (continued) |                |                        |                                |                  |                             |                |                       |  |  |  |
|-----------------------|----------------|------------------------|--------------------------------|------------------|-----------------------------|----------------|-----------------------|--|--|--|
| Island<br>No.         | Island<br>Name | Island<br>Area<br>(ha) | Community<br>Dominance<br>Type | No. of<br>Stands | Total<br>Stand<br>Area (ha) | % of<br>Island | % of<br>Old<br>Growth |  |  |  |
| 1088                  |                | 101                    | none                           | 0                | 0                           | 0.0            | 0.0                   |  |  |  |
|                       | 1              |                        | 1                              | 1                |                             |                |                       |  |  |  |
| 1091                  |                | 23                     | none                           | 0                | 0                           | 0.0            | 0.0                   |  |  |  |
|                       | 1              | 1                      |                                | 1                |                             |                | 1                     |  |  |  |
| 1104                  |                | 66                     | Red Pine                       | 1                | 66                          | 100.0          | 100.0                 |  |  |  |
|                       |                |                        |                                |                  |                             |                |                       |  |  |  |
| 1173                  | Red Pine       | 26                     | White Pine                     | 3                | 26                          | 100.0          | 100.0                 |  |  |  |
|                       |                |                        |                                |                  |                             |                |                       |  |  |  |
| 1197                  | Horseshoe      | 58                     | Red Pine                       | 2                | 46                          | 79.3           | 100.0                 |  |  |  |
|                       |                |                        |                                |                  |                             |                |                       |  |  |  |
|                       | _              |                        | White Pine                     | 1                | 90                          | 68.7           | 68.7                  |  |  |  |
| 1199                  | Deer           | 131                    | Red Pine                       | 1                | 41                          | 31.3           | 31.3                  |  |  |  |
|                       |                |                        | Total                          | 2                | 131                         | 100.0          | 100.0                 |  |  |  |
|                       |                |                        |                                |                  |                             |                |                       |  |  |  |
|                       |                |                        | White Birch                    | 2                | 38                          | 28.8           | 36.9                  |  |  |  |
| 1205                  | Beaver         | 132                    | White Pine                     | 4                | 34                          | 25.8           | 33.0                  |  |  |  |
|                       |                |                        | Poplar                         | 1                | 31                          | 23.5           | 30.1                  |  |  |  |
|                       |                |                        | Total                          | 7                | 103                         | 78.0           | 100.0                 |  |  |  |

 Table 3. Summary of FRI Old-Growth Stand Composition and Abundance for all Islands on Lake Temagami

| Community<br>Dominance<br>Type | Number<br>of<br>Stands | Stand<br>Relative<br>Abundance<br>(%) | Total<br>Stand<br>Area (ha) | Total<br>Stand<br>Area as % of<br>Old Growth | Total<br>Stand<br>Area as % of<br>Island |
|--------------------------------|------------------------|---------------------------------------|-----------------------------|----------------------------------------------|------------------------------------------|
| White Pine                     | 30                     | 39                                    | 687                         | 45.4                                         | 33.9                                     |
| Red Pine                       | 10                     | 13                                    | 265                         | 17.5                                         | 13.1                                     |
| White Birch                    | 13                     | 17                                    | 187                         | 12.4                                         | 9.2                                      |
| Poplar                         | 9                      | 12                                    | 122                         | 8.1                                          | 6.0                                      |
| White Cedar                    | 9                      | 12                                    | 109                         | 7.2                                          | 5.4                                      |
| Sugar Maple                    | 3                      | 4                                     | 89                          | 5.9                                          | 4.4                                      |
| Yellow Birch                   | 3                      | 4                                     | 55                          | 3.6                                          | 2.7                                      |

#### **Qualitative Surveys of FRI Non-Old Growth Stands**

Those island stands that were not classified as FRI old growth were aged using increment borers and all were found to qualify as old growth forest according to OMNR criteria (Table 4). Areas not visited included all private land that was FRI non-old growth, which made up only 1.7% of the study area, and Bear Island (see also Appendix 16). Each FRI non-old growth stand sampled in the field converted to the old growth classification once the cores were aged simply because FRI maps tend to underestimate the true ages of these FRI non-old growth stands. In contrast, the core ages from FRI old growth stands

(Table 5) are relatively close to the FRI ages of those stands. Core ages were on average 12% higher than FRI ages in these stands, whereas core ages of the FRI non-old growth stands were on average 75% higher than the FRI stand ages. Thus, FRI stand ages for our FRI old growth stands were slightly underestimated compared with severe underestimation of FRI stand age for the FRI non-old growth stands. We advise extreme caution when using ages provided on FRI maps, particularly in cases where ages are critical to the management outcome – as with identifying old growth forest stands for example. Ages derived from tree cores taken in the field should be obtained whenever possible when tree or stand age is a variable of interest.

Table 4. Summary of Qualitative Surveys of FRI Non-Old Growth Crown Land Stands (sorted by Island Number)

|             | FRI Data         |      |                   | Ecosite Data |            |            | Tree Core Data        |             |             |             |                           |
|-------------|------------------|------|-------------------|--------------|------------|------------|-----------------------|-------------|-------------|-------------|---------------------------|
| lsle<br>No. | FRI<br>Stand No. | WKGP | FRI Age<br>(2002) | Ecosite      | SOG<br>Age | EOG<br>Age | No.<br>Trees<br>Cored | Min.<br>Age | Max.<br>Age | Mean<br>Age | Old<br>Growth<br>Presence |
| 25          | 9714 & 14        | Ce   | 113               | ES 21        | 120        | 120        | 3                     | 127         | 195         | 161         | Yes                       |
| 312         | 2362             | Pw   | 123               | ES 20        | 150        | 140        | 13                    | 116         | 254         | 186         | Yes                       |
| 312         | 2556             | Pw   | 123               | ES 20        | 150        | 140        | 2                     | 166         | 265         | 215         | Yes                       |
| 312         | 3366             | Pw   | 68                | ES 11        | 150        | 130        | 16                    | 108         | 236         | 154         | Yes                       |
| 849         | 9203             | Pw   | 103               | ES 21        | 150        | 120        | 10                    | 114         | 249         | 169         | Yes                       |
| 1063        | 2149             | Bw   | 83                | ES 21        | 90         | 120        | 7                     | 89          | 251         | 153         | Yes                       |
| 1063        | 2655             | Ce   | 128               | ES 33        | 150        | 130        | 2                     | 143         | 163         | 153         | Yes                       |
| 1088        | 7759             | Pw   | 103               | ES 20        | 150        | 140        | 5                     | 130         | 205         | 186         | Yes                       |
| 1088        | 8653             | Pw   | 103               | ES 20        | 150        | 140        | 18                    | 114         | 252         | 192         | Yes                       |
| 1091        | 7565             | Pr   | 103               | ES 16        | 140        | 110        | 5                     | 113         | 216         | 165         | Yes                       |
| 1197        | 6910             | Bw   | 53                | ES 21        | 90         | 120        | 2                     | 132         | 242         | 187         | Yes                       |
| 1205        | 5118             | Bw   | 73                | ES 17        | 90         | 90         | 7                     | 114         | 162         | 131         | Yes                       |

Definitions: FRI – Forest Resource Inventory Ab – Black Ash SOG – species-specific old growth onset age B – Balsam Fir EOG – Ecosite-specific old growth onset age Bw – White Birch WKGP – FRI Working Group (dominant tree species)By – Yellow Birch Ce – Cedar NOTE: island 964 (Bear Island) and private land are Or - Red Oak not included in this table because no field sampling Mh - hard maple (sugar occurred on in these areas.

Ms - Soft Maple (red maple) Pj – Jack Pine Po – Poplar Pr - Red Pine Pw – White Pine Sb – Black Spruce Sw – White Spruce

maple)

Some might argue that core sampling in the field was not adequate to accurately estimate the age of the FRI non-old growth stands. However, multiple core samples in each stand were randomly placed along transects that followed the topographic gradients of each stand. In all cases, the average ages of these cores exceeded both the species-specific, and the ecosite specific minimum ages for the stand (Table 4). Our observations of these stands confirmed that there was generally a significant component of old trees. In several cases a super-canopy of old growth red pine was mixed throughout a stand of somewhat vounger trees (Photo 16, Appendix 20). See Appendices 18 and 19 for a list of plant species encountered during the field surveys.

#### **Quantitative Surveys of FRI Old-Growth Stands**

Old growth is a broad term which encompasses a huge range of forest ages and community types. A forest which barely meets the old growth criteria will not have the same characteristics as a 250-year old forest, for example (Hunter 1990, Davis 1996, Lofroth 1998). For this part of the study, it was hypothesized that the coarse woody debris (CWD) component (snags and logs) of old-growth forests on the islands increases in volume with increasing stand age. Given the importance of CWD as habitat to many species of wildlife (Quinby 1996b, MacKinnon 1998, McComb and Lindenmayer 1999) and given the relatively old forests of the Lake Temagami islands, it is likely that these islands provide unique and valuable habitat for wildlife. In fact, our results support this hypothesis.

The large islands in Lake Temagami have some of the oldest trees in the province with many over 200 years old (Photos 9, 13 and 14, Appendix 20) - the oldest found being a 394 year old white pine on island 1063 (excluding the shoreline cedar; Table 5). In the Temagami region, only the White Bear Forest is known to have older interior forest trees.

| Table 5. A Comparison of Ages of FRI Old-Growth Stands Based on Forest Resource |                                                           |         |        |     |                        |         |          |           |  |  |  |  |
|---------------------------------------------------------------------------------|-----------------------------------------------------------|---------|--------|-----|------------------------|---------|----------|-----------|--|--|--|--|
| Inventory                                                                       | Inventory Map Data and Tree Cores (ranked by maximum age) |         |        |     |                        |         |          |           |  |  |  |  |
|                                                                                 | FRI Stand                                                 |         | No. of | FRI | Ages from Core Samples |         |          |           |  |  |  |  |
| Isle No.                                                                        | No.                                                       | Ecosite | Plots  | Age | Min Age                | Max Age | Mean Age | No. Cores |  |  |  |  |
| 1063                                                                            | 2355                                                      | 21      | 3      | 163 | 163                    | 394     | 272      | 6         |  |  |  |  |
| 1199                                                                            | 5829                                                      | 21      | 2      | 234 | 123                    | 272     | 195      | 4         |  |  |  |  |
| 1197                                                                            | 6814                                                      | 20      | 3      | 213 | 175                    | 269     | 235      | 6         |  |  |  |  |
| 234                                                                             | 3306                                                      | 33      | 3      | 190 | 85                     | 259     | 144      | 6         |  |  |  |  |
| 234                                                                             | 2790                                                      | 29      | 3      | 139 | 152                    | 249     | 196      | 6         |  |  |  |  |
| 388                                                                             | 5279                                                      | 34      | 3      | 173 | 113                    | 240     | 185      | 6         |  |  |  |  |
| 312                                                                             | 3268                                                      | 11      | 3      | 153 | 115                    | 239     | 184      | 6         |  |  |  |  |
| 1199                                                                            | 6117                                                      | 21      | 3      | 213 | 121                    | 236     | 181      | 6         |  |  |  |  |
| 1173                                                                            | 8459                                                      | 20      | 2      | 163 | 204                    | 234     | 230      | 4         |  |  |  |  |
| 1205                                                                            | 4715                                                      | 14      | 3      | 148 | 123                    | 229     | 188      | 6         |  |  |  |  |
| 537                                                                             | 5231                                                      | 21      | 3      | 133 | 178                    | 217     | 206      | 6         |  |  |  |  |
| 660                                                                             | 8379                                                      | 12      | 3      | 178 | 152                    | 213     | 183      | 6         |  |  |  |  |
| 388                                                                             | 6179                                                      | 21      | 3      | 193 | 161                    | 196     | 182      | 6         |  |  |  |  |
| 388                                                                             | 5288                                                      | 22      | 3      | 163 | 66                     | 194     | 158      | 6         |  |  |  |  |
| 234                                                                             | 2598                                                      | 17      | 2      | 113 | 119                    | 191     | 150      | 4         |  |  |  |  |
| 312                                                                             | 2168                                                      | 20      | 3      | 123 | 73                     | 161     | 123      | 6         |  |  |  |  |
| 992                                                                             | 8827                                                      | 27      | 3      | 103 | 105                    | 131     | 117      | 6         |  |  |  |  |
| 1205                                                                            | 5233                                                      | 17      | 2      | 93  | 99                     | 124     | 113      | 4         |  |  |  |  |

Table 5 A Comparison of Ages of FRI Old-Crowth Stands Based on Forest Resource

Both maximum and mean core age were significantly correlated with ten CWD variables including white pine snags, red pine snags, all conifer snags combined, all snags combined, red pine logs, white cedar logs, white birch logs, all conifer logs combined, all logs combined, and all coarse woody debris combined (Table 6; Appendix 17; Photo 10, Appendix 20). In all cases except for white birch, the quantities of these variables increased with increasing stand age.

It was also found that FRI stand age was not correlated with any of the CWD variables analyzed by plot or by stand (all plots for a single stand combined). Without this relationship it is not possible to make landscape- and regional-level spatial predictions using FRI age as an indicator of CWD volume. However, with additional samples more broadly distributed it may be possible to find a relationship between FRI stand age and CWD.

|                       | Table 6. Correlations between Tree Core Age and Coarse Woody Debris (all correlations |      |                |              |      |      |      |                |             |                 |  |  |  |
|-----------------------|---------------------------------------------------------------------------------------|------|----------------|--------------|------|------|------|----------------|-------------|-----------------|--|--|--|
| significant at p<.05) |                                                                                       |      |                |              |      |      |      |                |             |                 |  |  |  |
|                       |                                                                                       |      | Snags          |              |      |      | Logs | S              |             | Coarse          |  |  |  |
| Tree Age              | Pw                                                                                    | Pr   | All<br>Conifer | All<br>Snags | Pr   | Ce   | Bw   | All<br>conifer | All<br>Logs | Woody<br>Debris |  |  |  |
| Maximum               | .352                                                                                  | .278 | .435           | .350         | .448 | .429 | 328  | .452           | .431        | .439            |  |  |  |
| Mean                  | .366                                                                                  | .319 | .477           | .424         | .382 | .330 | 322  | .389           | .356        | .372            |  |  |  |

Pw-white pine, Pr-red pine, Ce-white cedar, Bw-white birch

Due primarily to logging, the amount and diversity of CWD has been severely reduced throughout much of eastern North America (McComb and Lindenmayer 1999) including much of the TMU. However, some of the forest stands on the large islands in Lake Temagami have CWD abundances similar to findings from Quinby's 1989 survey in Temagami which included the 30 oldest and largest old-growth red and white pine stands in the region (Quinby 1991). In some cases, CWD values on the islands were found to be higher than those found by Quinby in 1989. For example, the highest log volume found on the islands (410 m<sup>3</sup>/ha in one plot in FRI stand #2355 on island 1063) is 56% greater than the highest log volume found in Quinby's 1989 old-growth survey (263 m<sup>3</sup>/ha). These results indicate that, in addition to their pristine character, many of these island stands are also very productive and structurally diverse. Based on (1) their old age, (2) our finding of a positive relationship between stand age and CWD, and (3) their pristine condition, we suspect that the large islands in Lake Temagami have some of the highest volumes of CWD in the Province of Ontario.

#### **Rare Forest Community Types and Representation**

Analysis of forest community types (ecosites) in the TMU, based only on species composition, shows that a number of these community types are relatively rare (Table 7). Any forest community type covering 5% or less of the TMU forested area is considered for this report as sufficiently rare to merit special consideration. This level of 5% is based partially on the following definitions developed by Noss et al. (1995): "critically endangered" as <2% remaining, "endangered" as <15% and >2% remaining, and "threatened" as <30% and >16% remaining. Additional study is required to address the ecological and biological aspects of rarity as it applies to conserving forest ecosystems at the regional scale.

A total of 13 different forest community types occur on the Lake Temagami islands. Of these, ten are rare and cover a total of 1,145 ha or 57% of the total Lake Temagami islands study area. Five community types on the Lake Temagami islands occur in amounts significantly greater compared to the expected random distribution throughout the entire TMU (Table 7, last column). These five forest community types include white cedar-lowland hardwood (7.4x more abundant than expected), white pine-red pine-white spruce-white birch-trembling aspen (6.0x more abundant than expected), white pine-largetooth aspen-red oak (5.1x more abundant than expected). Most of these community types include old-growth red and white pine forest, which is one of Ontario's most endangered ecosystems (Quinby 1993, Quinby 1996a).

Without even considering natural heritage values other than community rarity, this high concentration of five rare community types as a group is an excellent candidate for protection. By including these community type occurrences together in the same reserve, representation would be maximized by including numerous community types and integrity would also be maximized by creating one larger connected reserve rather than several smaller separate reserves. Further legal protection of these

endangered ecosystems has been called for by Uhlig et al. (2001, pg. 26): "Identifying significant examples of primary remnant old growth stands for all ecosites, including white and red pine on the Canadian Shield, would be of value for natural heritage representation".

| Temagami (from OMNR 2002)                                              |                     |                     |                    |                    |                               |
|------------------------------------------------------------------------|---------------------|---------------------|--------------------|--------------------|-------------------------------|
| Ecosite                                                                | Area of<br>TMU (ha) | Island<br>Area (ha) | Area of<br>TMU (%) | Island<br>Area (%) | Variation<br>From<br>Expected |
| 23 Red Oak-Hardwood                                                    | 6                   |                     | 0.001              |                    |                               |
| 30 Hemlock-Yellow Birch                                                | 35                  |                     | 0.007              |                    |                               |
| 24 Sugar Maple-Red Oak-Basswood                                        | 43                  |                     | 0.009              |                    |                               |
| 25 Sugar Maple-Beech-Red Oak                                           | 92                  |                     | 0.019              |                    |                               |
| 14 White Pine-Largetooth Aspen-Red Oak                                 | 2,058               | 44                  | 0.435              | 2.199              | 5.1 x                         |
| 34 White Cedar-Lowland Hardwood                                        | 2,495               | 78                  | 0.527              | 3.898              | 7.4 x                         |
| 32 White Cedar- Black Spruce-Tamarack                                  | 2,525               |                     | 0.534              |                    |                               |
| 35 Lowland Hardwood                                                    | 2,772               |                     | 0.586              |                    |                               |
| 31 Black Spruce-Tamarack                                               | 3,861               |                     | 0.816              |                    |                               |
| 12 Red Pine                                                            | 4,958               | 69                  | 1.048              | 3.433              | 3.3 x                         |
| 27 Sugar Maple- White Birch- Poplar- White Pine                        | 9,844               | 27                  | 2.080              | 1.349              | -1.5 x                        |
| 13 Jack Pine- White Pine- Red Pine                                     | 13,437              | 13                  | 2.840              | 0.650              | -4.4 x                        |
| 11 White Pine- Red Pine                                                | 15,129              | 129                 | 3.197              | 6.447              | 2.0 x                         |
| 29 Sugar Maple- Yellow Birch                                           | 17,035              | 89                  | 3.600              | 4.448              | 1.2 x                         |
| 33 White Cedar- Other Conifer                                          | 17,248              | 67                  | 3.645              | 3.348              | -1.1 x                        |
| 20 White Pine- Red Pine- White Spruce-<br>White Birch- Trembling Aspen | 21,856              | 553                 | 4.619              | 27.653             | 6.0 x                         |
| 19 Poplar- Jack Pine- White Spruce- Black<br>Spruce                    | 24,964              |                     | 5.276              |                    |                               |
| 22 White Cedar- Other Conifer                                          | 25,301              | 76                  | 5.347              | 3.798              | -1.4 x                        |
| 15 Jack Pine                                                           | 39,042              |                     | 8.251              |                    |                               |
| 17 Poplar- White Birch                                                 | 50,938              | 178                 | 10.765             | 8.916              | -1.2 x                        |
| 18 Poplar- White Birch- White Spruce- Balsam<br>Fir                    | 54,681              |                     | 11.556             |                    |                               |
| 21 White Cedar- White Pine- White Birch-<br>White Spruce               | 71,043              | 655                 | 15.014             | 32.710             | 2.2 x                         |
| 16 Black Spruce- Pine                                                  | 93,809              | 23                  | 19.826             | 1.149              | -17.2 x                       |
| Total                                                                  | 473,170             | 2001                | 100                | 100.000            |                               |

## Table 7. Ecosite Area in the Temagami Management Unit and on the Large Islands on Lake Temagami (from OMNR 2002)

Comparing islands in Lake Temagami with islands occurring elsewhere in the TMU shows several significant differences (Table 8). Relative to island stands throughout the remainder of the TMU, stands on islands in Lake Temagami are 34% older, have 114% more white pine, have 408% more red pine, and have 10% higher tree species richness per stand. At minimum, the Lake Temagami islands best represent these features of large islands in the TMU. There is 307% less balsam fir in the stands of the Lake Temagami islands relative to the other islands and the islands in Lake Temagami are 67% less isolated than those in lakes throughout the remainder of the TMU. The differences in isolation suggest that the Lake Temagami islands are biogeographically different from islands elsewhere in the TMU. This is

likely due to the occurrence of many smaller islands in Lake Temagami which act as stepping stones to the mainland. Lake Temagami, with more than half of the large islands on less than 10% of the entire TMU area, appears to have unique and ecologically important island forest communities.

| Table 8. Representation Comparison of the Large Islands on Lake Temagami with         other Large Islands in the Temagami Management Unit (all significant at p<.05; ) |                     |            |      |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|------|--|--|--|--|--|--|
| Feature                                                                                                                                                                | Means               |            |      |  |  |  |  |  |  |
| reature                                                                                                                                                                | L. Temagami Islands | Difference |      |  |  |  |  |  |  |
| Stand Age (yrs)                                                                                                                                                        | 142                 | 106        | 34%  |  |  |  |  |  |  |
| Isolation (m)                                                                                                                                                          | 57                  | 95         | 67%  |  |  |  |  |  |  |
| White Pine (%)                                                                                                                                                         | 24.8                | 11.6       | 114% |  |  |  |  |  |  |
| Red Pine (%)                                                                                                                                                           | 12.7                | 2.5        | 408% |  |  |  |  |  |  |
| Balsam Fir (%)                                                                                                                                                         | 2.7                 | 11.0       | 307% |  |  |  |  |  |  |
| No. Tree Species per<br>FRI Stand                                                                                                                                      | 5.5                 | 5.0        | 10%  |  |  |  |  |  |  |

#### **Rare Plants**

Based on White (1990), nine plant species that were either locally or regionally rare were found on the Lake Temagami islands (Table 9). Partridgeberry, staghorn sumac, round-leaved dogwood, and

| Table 9. | <b>Rare Plant S</b> | pecies on S | ome of the | Large Isl | ands in Lak | e Temagami ( | (ranked by rarity) |  |
|----------|---------------------|-------------|------------|-----------|-------------|--------------|--------------------|--|
|          |                     |             |            |           |             |              |                    |  |

|                          | Island Number |      |      |     |      |     |     |      |     |      |     |     |      |      |    |               |
|--------------------------|---------------|------|------|-----|------|-----|-----|------|-----|------|-----|-----|------|------|----|---------------|
| Plant Species            | 312           | 1088 | 1205 | 660 | 1091 | 992 | 849 | 1063 | 234 | 1197 | 388 | 537 | 1199 | 1173 | 25 | No. o<br>Isl. |
| Regionally Rare          |               |      |      |     |      |     |     |      |     |      |     |     |      |      |    |               |
| Common Juniper           | x             |      |      | x   |      |     |     |      |     |      |     |     |      |      |    | 2             |
| Partridgeberry           | x             |      |      |     | x    |     | x   |      |     |      |     |     |      |      |    | 3             |
| Staghorn Sumac           |               | x    | x    | х   | x    | х   |     |      |     |      |     |     |      |      |    | 5             |
| Marginal Wood Fern       | x             | х    | x    |     |      | x   |     |      | x   |      | x   |     |      |      |    | 6             |
| Striped Maple            | x             | x    | x    | x   | x    | x   | x   | х    | x   | x    | x   | x   |      | х    |    | 13            |
| Locally Rare             |               |      |      |     |      |     |     |      |     |      |     |     |      |      |    |               |
| Three-Toothed Cinquefoil | x             |      |      |     |      |     |     |      |     |      |     |     |      |      |    | 1             |
| Red Baneberry            | x             | x    |      |     |      |     |     |      |     |      |     |     |      |      | x  | 3             |
| Round Leaved Dogwood     |               | х    | x    | х   |      |     |     |      |     |      |     |     |      |      |    | 3             |
| Rattlesnake Plantain     | x             | x    |      |     |      |     |     | х    |     | x    |     | x   | x    |      |    | 6             |
| Total Species            | 7             | 6    | 4    | 4   | 3    | 3   | 2   | 2    | 2   | 2    | 2   | 2   | 1    | 1    | 1  |               |

NOTE: 25-Bell Island, 234-Temagami Island, 312-High rock Island, 388-Papoose Island, 660-Narrows Island, 849-Cattle Island, 992-Alexander Island, 1173-Red Pine Island, 1197-Horseshoe Island, 1199-Deer Island, 1025-Beaver Island

three-toothed cinquefoil are very rarely seen in Temagami. Others such as striped maple and marginal wood fern don't seem to be quite as rare, although striped maple in particular appears to be far more abundant on the Lake Temagami islands than elsewhere in Temagami. In most cases, these are species that are at the northern limits of their ranges, being more common further south. Thus, they are more susceptible to disturbance than many other plants that are found in association with them. Our plant surveys were by no means exhaustive - many more rare plant species likely occur on the islands. For example, although survey transects followed topographic gradients, large expanses of wetland on the islands were not surveyed.

#### Integrity

Evidence of historical logging was recorded whenever it was encountered during the island field surveys. The extent of pristine landscape varies from one island to another and more intensive surveys are required for a more accurate assessment, however, every island surveyed showed at least some signs of shoreline logging and all appear to be mostly pristine (none less than 90%). The extent of the logging varied, from rare stumps on Papoose and Deer Island, to some areas of intensive cutting on Cattle Island, island 1063, and Temagami Island. On Cattle Island, stumps cut roughly 30 to 50 years ago were surveyed (in two plots) in a particularly disturbed upland area. Results show that their mean basal area ( $20 \text{ m}^2/\text{ha}$ ) is 83% of the basal area of the remaining trees ( $24 \text{ m}^2/\text{ha}$ ) (Table 10). This intensity of cutting is comparable to a 45% industrial shelterwood cut. Much of this cutting probably supplied logs for dock cribs, cabins, etc. (Photos 7 & 8, Appendix 8).

| Table 10. Historical Cutting on Cattle Island |                         |                       |  |  |  |  |
|-----------------------------------------------|-------------------------|-----------------------|--|--|--|--|
| Plots                                         | Living Trees<br>(m²/ha) | Cut Stumps<br>(m²/ha) |  |  |  |  |
| 1                                             | 28.1                    | 12.6                  |  |  |  |  |
| 2                                             | 19.8                    | 27.4                  |  |  |  |  |
| mean                                          | 24.0                    | 20.0                  |  |  |  |  |

#### **Old White Cedar**

Four white cedars that appeared to be old were aged during the course of this study. The oldest cedar, which was found on island 972 (diameter of ~30 cm, height of 3-4 m), had 498 annual growth rings that could be counted (Table 11, see Photo 1 in Appendix 8). Some rings had been lost due to heart rot, making the age of this cedar somewhere over 500 years. These old cedars were found on rocky shoreline sites where they are protected from fire and where their roots are confined, creating a bonsai effect (Larson and Kelly 1990).

| Table 11. Old Cedar Survey                     |     |     |  |  |  |  |  |
|------------------------------------------------|-----|-----|--|--|--|--|--|
| Island Number/ Diameter<br>Name (cm) Age (yrs) |     |     |  |  |  |  |  |
| 972                                            | 30  | 498 |  |  |  |  |  |
| 234 Temagami                                   | 12  | 307 |  |  |  |  |  |
| 992 Alexander                                  | 8.5 | 123 |  |  |  |  |  |
| 830                                            | 3.8 | 109 |  |  |  |  |  |

Most of the research on these ancient rock-dwelling cedars has come from the cliff ecology group at the University of Guelph where studies have been primarily located on the Niagara Escarpment. During the first season of research on the Escarpment, the oldest tree was aged at 511 years (Larson and Kelly 1990). Subsequently, a tree with an estimated age of 1653 years was discovered there (Larson 2001). With its many islands and cliffs, Temagami may be comparable to the Niagara Escarpment in its potential for supporting extremely old cedars. In addition, white cedars as old as 802 years have been found on islands and cliffs in nearby northern Quebec (Archambault and Bergeron 1992). It is highly likely that additional searching in Temagami will uncover cedars with more than 498 growth rings.

#### Wildlife

Wildlife activity on the large islands in Lake Temagami was not assessed directly, however, observations of scat, browse, and other evidence of wildlife were noted. Moose scat was recorded in varying amounts on Beaver, Deer, Papoose and High Rock Islands. While inconclusive, on some islands there were as many as ten or more moose pellet groups observed, while on other islands with similar levels of sampling, no moose pellet groups were observed. Stephens and Peterson (1984) found that islands adjacent to Isle Royale are inhabited preferentially by moose with calves to avoid predators. Our anecdotal evidence suggests that moose may be using some of the islands in Lake Temagami for the same purpose. Evidence of deer was encountered only on Papoose Island. In this case, 17 deer pellet groups were recorded in a fairly small area. Signs of pileated woodpeckers (Photo 15, Appendix 20) and black bear (Photo 11, Appendix 20) were also observed.

Beaver stumps were often observed on the islands. In one case on Papoose Island, beavers had chewed trees at a variety of points along a 130 m transect from the shoreline to the ridgetop. Perhaps island isolation and corresponding lower predator populations may allow beavers to forage further inland than they might on mainland shores.

Loons prefer to nest on the sheltered sides of islands and in small bays and inlets that are protected from windy conditions and boat waves that may flood the low-lying nests (McIntyre and Barr 1997). It is only during nesting season that loons come ashore where they become more vulnerable to human disturbance. In some cases this results in abandoned nests and eggs. Heimberger et al. (1983) found that loon nest success rate declined as the number of cottages within 150 meters of the nest increased. During our field work, two loon nests were encountered while traveling to and from sampling areas. These were found in small sheltered bays on Papoose Island and Beaver Island (Photo 12, Appendix 20).

#### VALUE FOR RECREATION AND EDUCATION

The unique value of the Lake Temagami islands for current and future recreation and education derives from four characteristics of the islands. First, they are surprisingly pristine, considering the intensity of use on the lake. Second, they are dominated by old-growth forests. Third, they are easily accessible. And fourth, they are ecologically unique within the TMU, and possibly within the world. The educational and recreational value of the islands is obvious with the many children's camps and cottages on the lake, and the number of established canoe tripping routes. This value will only increase as recognition of old-growth forests grows and as the forest communities that they represent continue to decrease in area under current management throughout the TMU and the rest of central Ontario. Red Pine Island has a dense old-growth stand which may be one of the most beautiful unknown old-growth areas in Temagami. In particular, it would be worth preserving as an outstanding example of old growth - without trails, since most of the finest old growth in Temagami is now trail-accessible. This would ensure its value for low-impact research, education, and recreation.

#### **FUTURE WORK**

#### **Islands Conservation Strategy**

This study focused on less than 2% of the 1,000+ islands in Lake Temagami and for those islands that were studied, only a coarse-level rapid survey approach was used. Although this approach is typically the first step in developing a conservation strategy, these results provide only a partial understanding of the biodiversity and ecological processes on these islands. If long-term conservation of the islands in Lake Temagami is desired, a complete ecological inventory (geology, soils, plants, insects, birds, mammals, wetlands, streams, lakes, cliffs, etc.) of the islands should be the ultimate goal. Because of the enormity of this task, however, it will be necessary to develop an inventory-based research plan that can be implemented in stages over the course of many years. Central to this plan would be (1) identification and ranking of all threats to the ecological integrity of the islands, (2) development of a data collection system that facilitates and integrates involvement by the local community, professional conservation scientists, and academic experts including student projects, and (3) creation and maintenance of an information database so that knowledge will not be lost, can be passed on from one database manager to the next, and can be made accessible to interested parties.

#### Wetlands and Lakes

One of the unique features of the large islands in Lake Temagami is that they provide enough area to support small lakes and wetlands. Three wetlands greater than 1 ha, many smaller wetlands (unmarked on maps), and two lakes are found on the large islands in Lake Temagami. By comparison, only one sizeable wetland and no lakes are found on the 19 other large islands throughout the TMU, however, these observations are based only on map analysis. No field work was conducted in Lake Temagami's island wetlands and lakes during the course of this study, however, because it is likely that rare plant species, significant wildlife habitat, and other unique ecological features exist there, inventories of these features need to be conducted.

#### **Red Pine Fire Ecology**

Red pine is 408% more abundant on the large islands in Lake Temagami than on other large islands in the TMU, and the red pine forest community type (ecosite 11, an endangered ecosystem) is three times more abundant on the Lake Temagami islands than throughout the TMU landscape as a whole. Being fire-dependent, red pine forest requires frequent surface fires for regeneration, and given their prevalence on these islands, it is also safe to assume that fire has been a frequent event on these islands. Red pine trees provide an excellent opportunity to reconstruct forest fire history given that forest fires often damage only the bark on one side of a tree without killing it. The fire scar that remains on the burned side of the tree can be used to precisely date the occurrence of the fire using tree-ring analysis.

During the course of our field work, red pine trees or snags with fire scars were often observed, and in several cases multiple fire scars were noted, up to a maximum of five fire scars (from five different fires) on a single snag. Some of these stands had uneven age structures (multiple ages from young to old), which is a condition of red pine forest that is not well understood. The Lake Temagami islands could be a natural laboratory to study red pine fire ecology, and eventually uninhabited islands could be ideal sites for prescribed burn research and for experimenting with other types of understory and ground litter removal techniques. Results of these studies could be used to improve red pine regeneration in stands that are managed for fiber production as well as those that are managed (and protected) for their old-growth characteristics. For example, much of the shoreline reserve on Lake Temagami is composed of old-

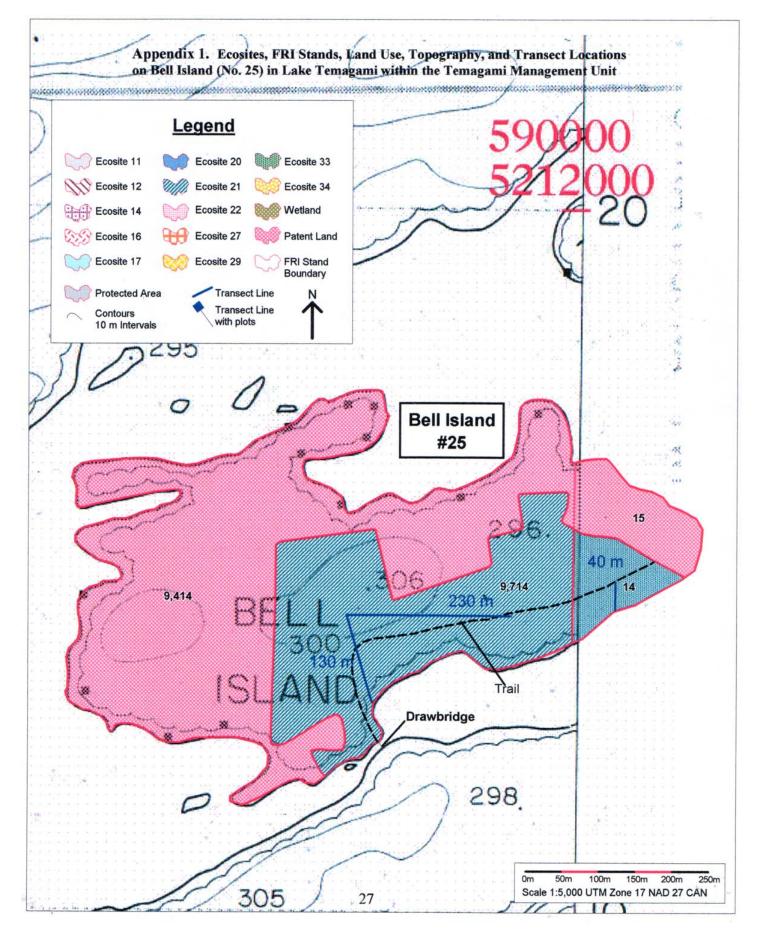
growth red pine forest, which according to our past observations, is not successfully regenerating back to red pine.

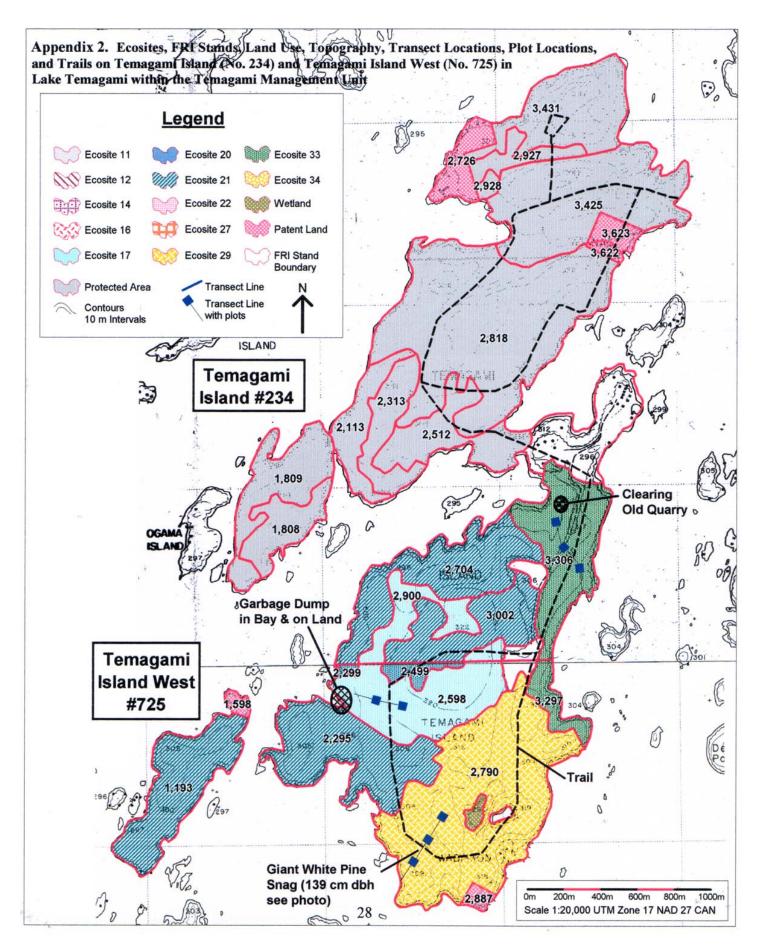
#### Wildlife Populations

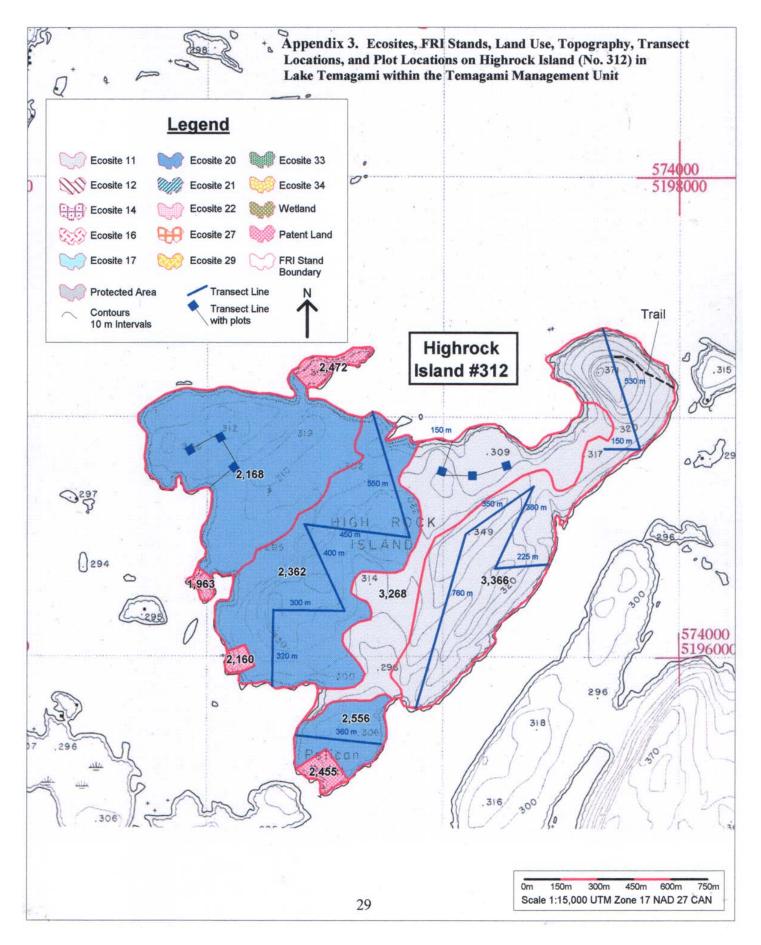
A few unusual trends related to wildlife were observed on the islands. For example, we found evidence of a large population of deer on Papoose Island and we observed that moose are using some islands and not others. Signs of pine marten and black bear were also observed and sightings of broad-winged hawk, merlin, and other bird species were recorded. A detailed study of wildlife on the islands would be particularly useful if it focused on biogeography, relating size and isolation of islands to their wildlife populations. One focal species could be pine marten, an old growth forest-dependent, mid-size carnivore with a home range suitable for the larger islands on Lake Temagami. Results of this kind of research would provide insight into forest fragmentation theory and would be applicable to forest conservation issues throughout the TMU and beyond where industrial forestry has fragmented or continues to fragment the natural landscape. Lake Temagami with its myriad of islands is an ideal natural laboratory for the study of island biogeography theory and these studies need not be limited to just to one or few species, but in fact could address any species or group of species that are found on these islands.

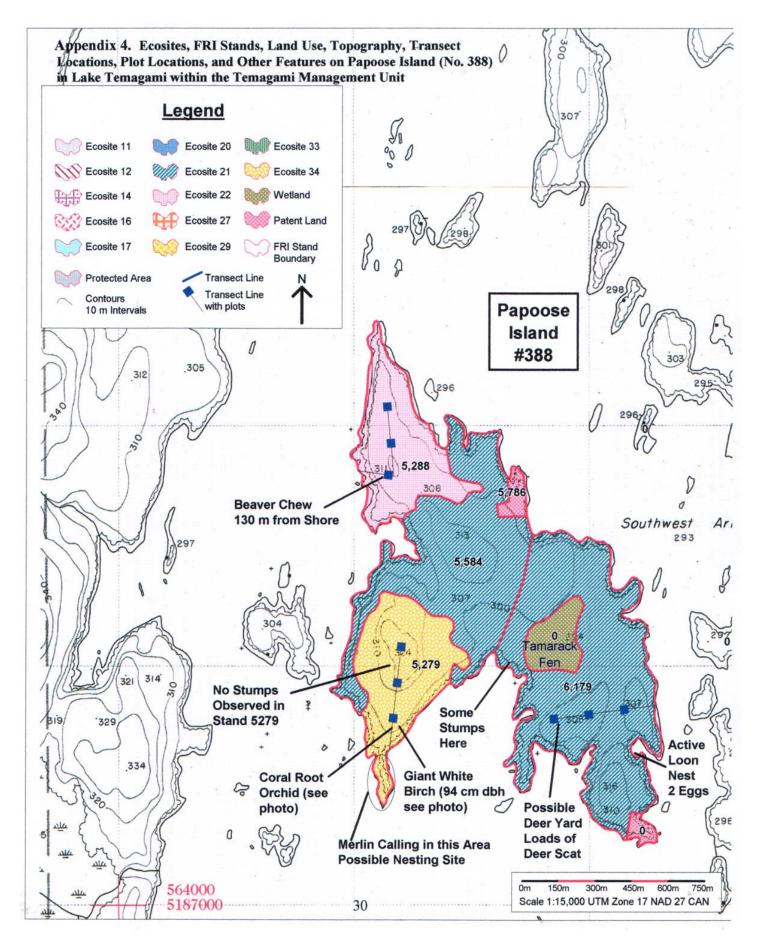
#### **Old White Cedar**

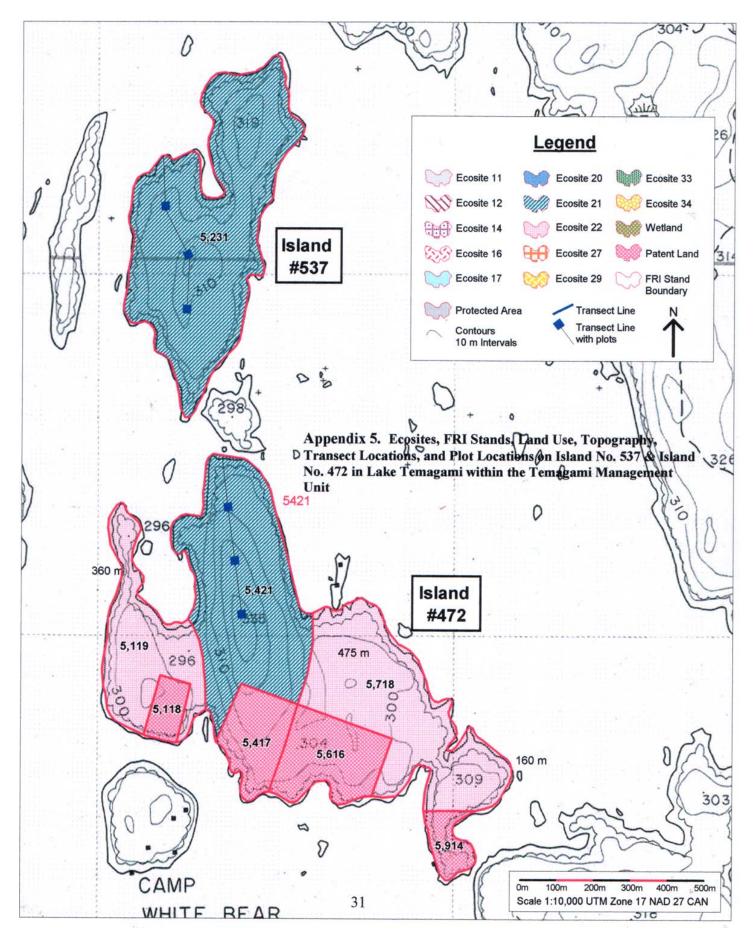
Our results so far suggest that Temagami, with its many islands and cliffs, may be comparable to the Niagara Escarpment in its potential for supporting very old cedar trees. Further research is needed to determine the extent of ancient cedars and to characterize their habitat. This information, combined with existing literature, will help to predict the occurrence of these cedars on a landscape scale across central and northern Ontario. Over centuries, the undisturbed environments that favor ancient bonsai cedars facilitate the establishment of a unique ecosystem of invertebrates, ferns and other plants, algae, and bacteria, which is not found elsewhere on the landscape (Larson et al. 1999). This community is relatively unstudied in central Ontario.

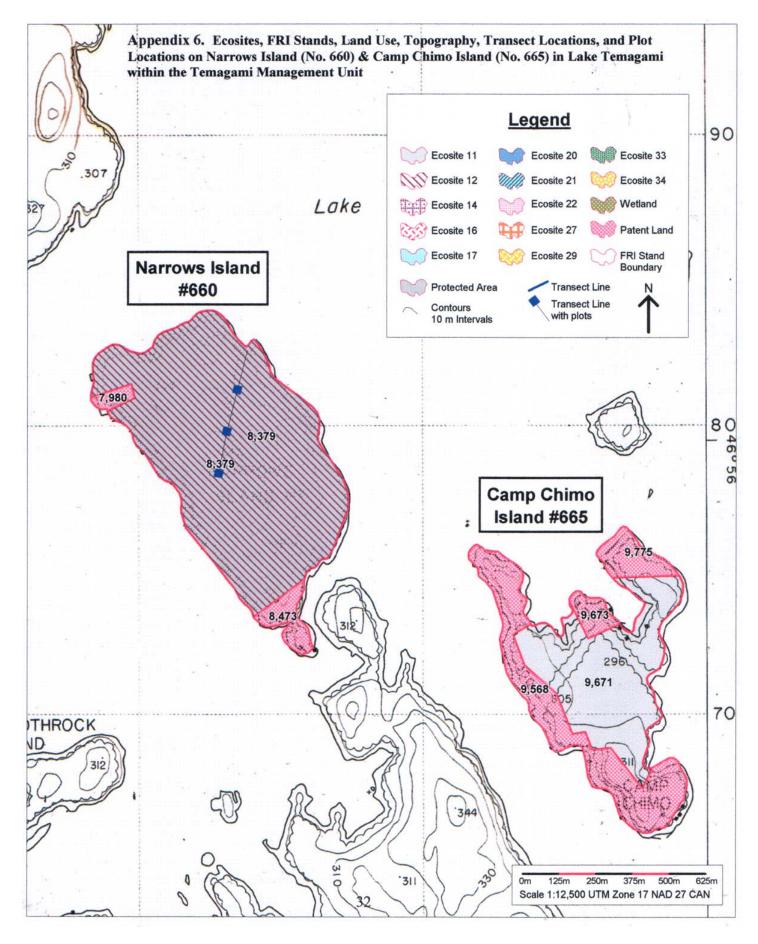

#### LITERATURE CITED

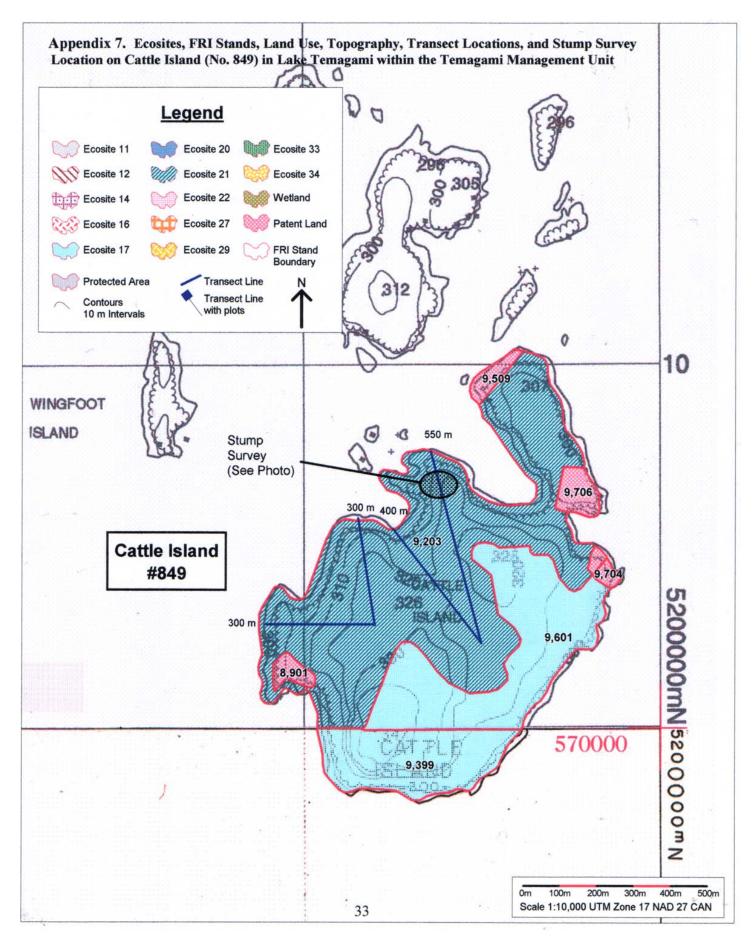

- Archambault, S. and Y. Bergeron. 1992. An 802-year tree-ring chronology from the Quebec boreal forest. Can. J. For. Res. 22: 674-682
- Carlquist, S. 1974. Island Biology. Columbia University Press, New York, NY. 660 pp.
- Chambers, B., K. Legasy and C. Bently. 1996. *Forest Plants of Central Ontario*. Lone Pine Publishing, Edmonton, Alberta. 448 pp.
- Curtis, J. T. 1956. The modification of mid-latitude grasslands and forests by man. In: *Man's Role in Changing the Face of the Earth*, ed. by W. L. Thomas, University of Chicago Press, Chicago, Illinois.
- Darwin, C. 1859. On the Origin of Species by Means of Natural Selection. J. Murray, London. (from Whittaker 1998)
- Davis, M. B. (ed.) 1996. *Eastern Old-Growth Forests: Prospects for Rediscovery and Recovery*. Island Press, Washington DC. 383 pp.

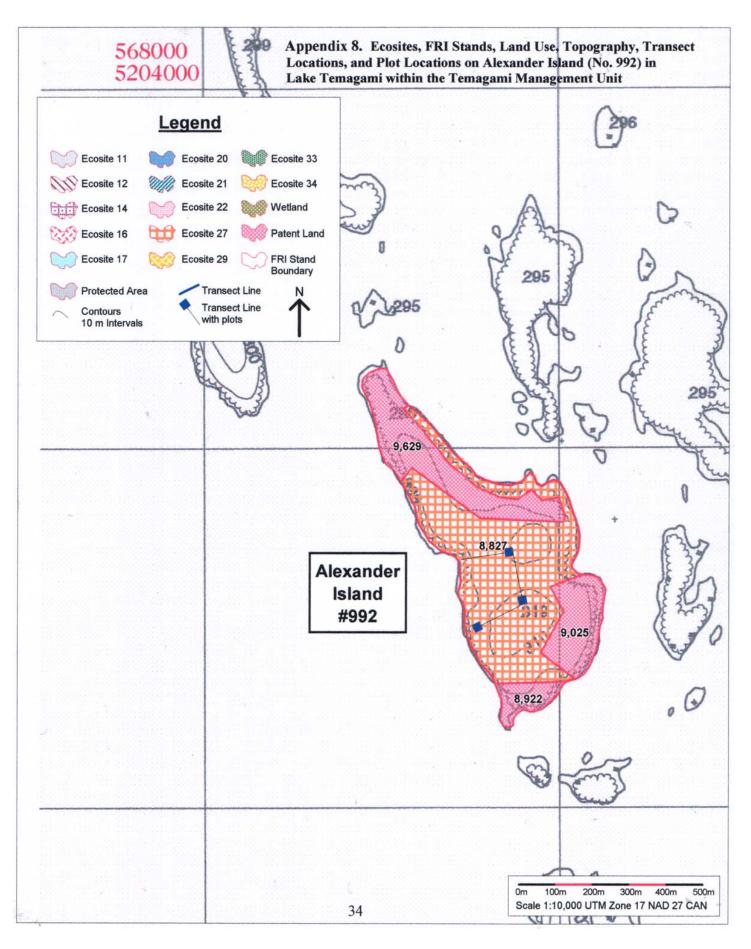

- Dean, W. R. J. and W. J. Bond. 1990. Evidence for rapid faunal changes on islands in a man-made lake. I. Ants. *Oecologia* 83:388-391.
- Harris, L. D. 1984. *The Fragmented Forest: Island Biogeography Theory and the Preservation of Biotic Diversity*. The University of Chicago Press, Chicago, Ill. 211 pp.
- Heimberger, M., Euler, D. and J. Barr. 1983. The impact of cottage development on Common Loon reproductive success in central Ontario. *The Wilson Bulletin* 95(3): 431-439.
- Hunter, M. L. 1990. Wildlife, Forests, and Forestry: Principles of Managing Forests for Biological Diversity. Prentice-Hall, Inc., Englewood Cliffs, NJ. 370 pp.
- Iles, N. 1990. *Reconnaissance Inventory to Locate Old White and/or Red Pine Stands in Site Region 4E of the Ontario Ministry of Natural Resources*. Ontario Ministry of Natural Resources, Sudbury, Ontario.
- Kadmon-Ronen, A. and H. R. Pulliam. 1995. Effects of isolation, logging and dispersal on woodyspecies richness of islands. *Vegetatio* 116:63-68.
- Larson, D.W. 2001. The paradox of great longevity in a short-lived tree species. *Experimental Gerontology* 36:651-673.
- Larson, D. W., and P. E. Kelly. 1990. The extent of old-growth *Thuja occidentalis* on cliffs of the Niagara Escarpment. *Canadian Journal of Botany* 69:1628-1636.
- Larson, D. W., U. Mathes and P. E. Kelly. 1999. Cliffs as Natural Refuges. *American Scientist* 87(5): 410-417.
- Lofroth, E. 1998. The Dead Wood Cycle. In: *Conservation Biology Principles for Forested Landscapes*, ed. by J. Voller & S. Harrison. UBC Press, Vancouver, BC. pp. 185-214.
- MacArthur, R. H. and E. O. Wilson. 1967. *The Theory of Island Biogeography*. Princeton University Press, Princeton, New Jersey. 203 pp.
- MacKinnon, A. 1998. Biodiversity and Old-Growth Forests. In: Conservation Biology Principles for Forested Landscapes, ed. by J. Voller & S. Harrison. UBC Press, Vancouver, BC. pp. 146-184.
- McIntyre, J. W. and J. F. Barr. 1997. Common Loon (*Gavia immer*), In: *The Birds of North America*, No. 313 (A. Poole and F. Gill, eds.). The Academy of Natural Sciences, Philadelphia, PA, and The American Ornithologists Union, Washington, D.C.
- Milne, B. T. and R. T. T. Forman. 1986. Peninsulas in Maine: Woody plant diversity, distance, and environmental patterns. *Ecology* 67:967-974.
- Ontario Ministry of Natural Resources. 2002. *Detailed Ecosites for the Temagami Management Unit Area Map* (scale 1:150,000). Produced by the Ministry of Natural Resources, North Bay District Office, North Bay, Ontario.
- Quinby, P. A. 1991. Ancient Forest Survival Guide. Earthroots, Toronto, Ontario. 43 pp.

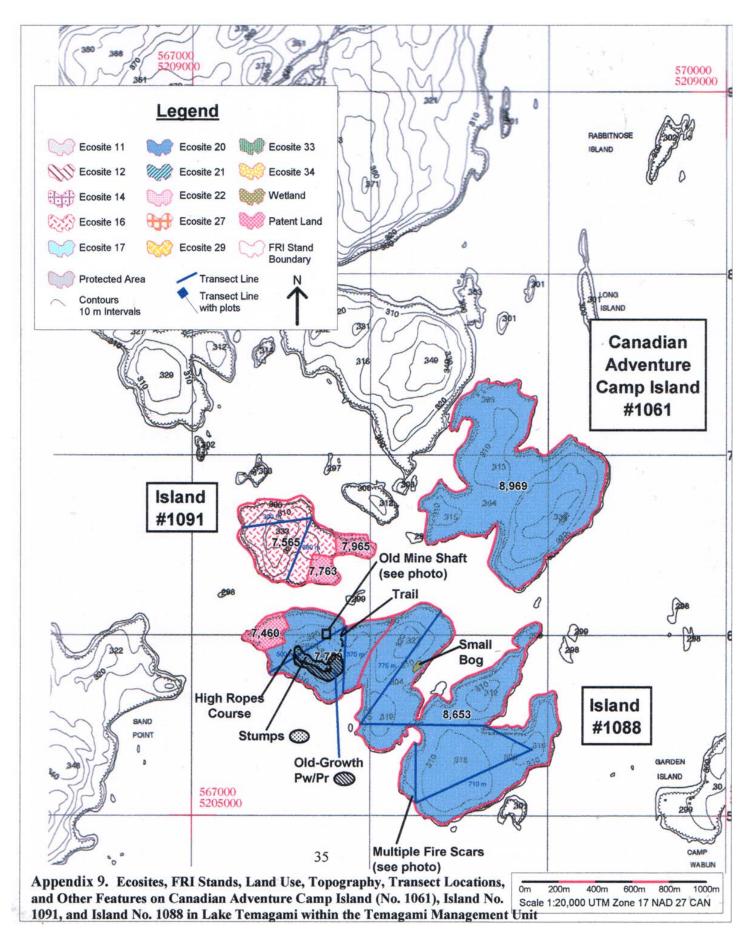

- Quinby, P. 1993. Old-Growth Eastern White Pine Forest: An Endangered Ecosystem. *Forest Landscape Baselines* No. 2, Ancient Forest Exploration & Research, Toronto and Powassan, Ontario. 4 pp.
- Quinby, P. 1996a. Status of Old-Growth Red Pine Forests in Eastern North America: A Preliminary Assessment. *Forest Landscape Baselines* No. 14, Ancient Forest Exploration & Research, Toronto and Powassan, Ontario. 4 pp.
- Quinby, P. 1996b. An Overview of Ancient Forest Ecology in the Lake Temagami Site Region. *Forest Landscape Baselines Report* No. 11, Ancient Forest Exploration & Research, Toronto and Powassan, Ontario. 4 pp.
- Quinby, P., T. Lee, C. Schultz and J. Powers. 1996. An Ancient Forest Atlas of the Lake Temagami Site Region (4E). 1996. Collaboration with the Canadian Nature Federation, Ottawa, Ontario. 93 pp.
- Stephens, P. W. and R. O. Peterson. 1984. Wolf avoidance strategies of moose. *Holarctic Ecology*. 7:239-244.
- Tangney, R. S., J. B. Wilson and A. F. Mark. 1990. Bryophyte island biogeography: A study in Lake Manapouri, New Zealand. *Oikos* 59:21-26.
- Uhlig, P., A. Harris, G. Craig, C. Bowling, B. Chambers, B. Naylor and G. Beemer. 2001. Old growth forest definitions for Ontario. Ontario Ministry of Natural Resources, Queen's Printer for Ontario, Toronto, Ontario. 27 pp.
- Wallace, A. R. 1902. Island Life. Macmillan, London. (from Whittaker 1998)
- White, D. J. 1990. An Assessment of Representative and Specieal Life Science Features of the Temagami Planning Area. Prepared for the Ontario Ministry of Natural Resources, Northeastern Region, Sudbury, Ontario and the Temagami District, Temagami, Ontario.
- Whittaker, R. J. 1998. *Island Biogeography: Ecology, Evolution, and Conservation*. Oxford University Press, New York, NY. 285 pp.

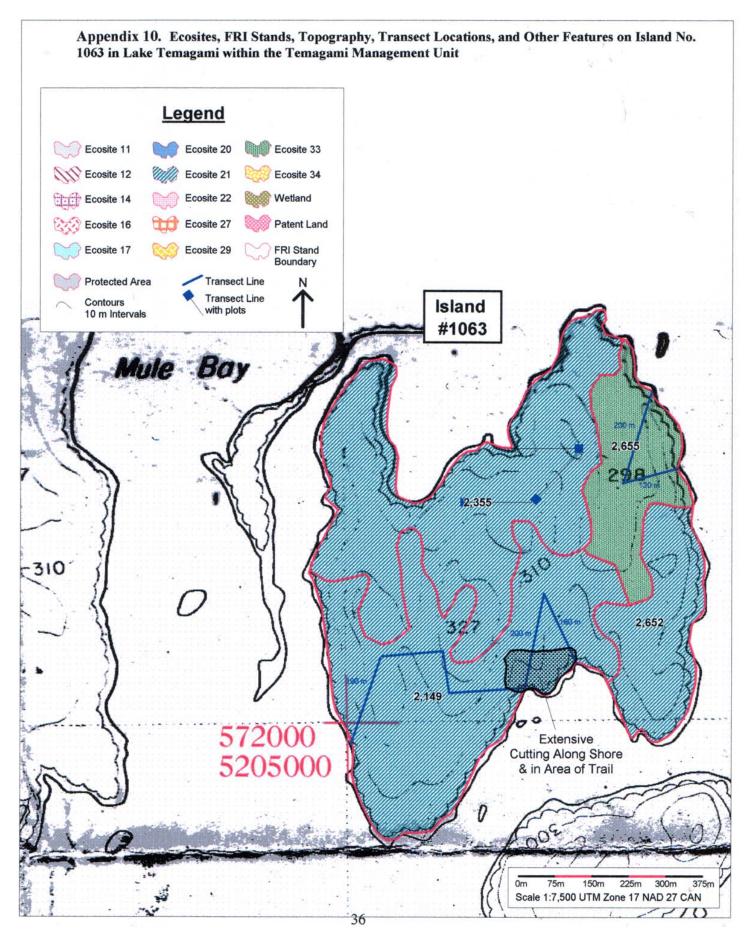

Williamson, M. 1981. Island Populations. Oxford University Press, New York, NY. 286 pp.

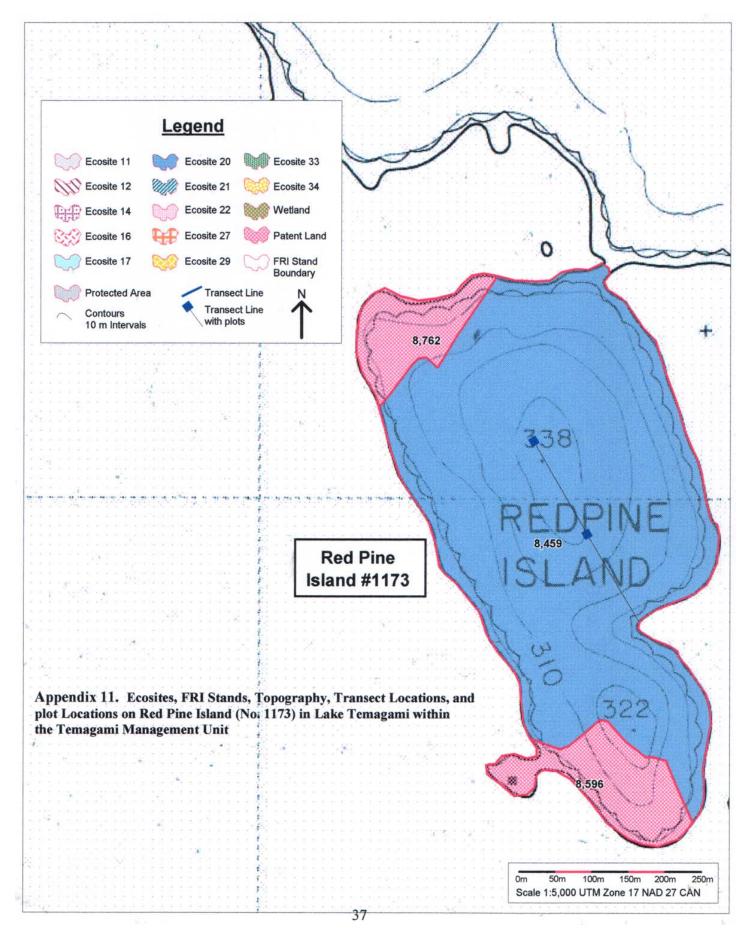


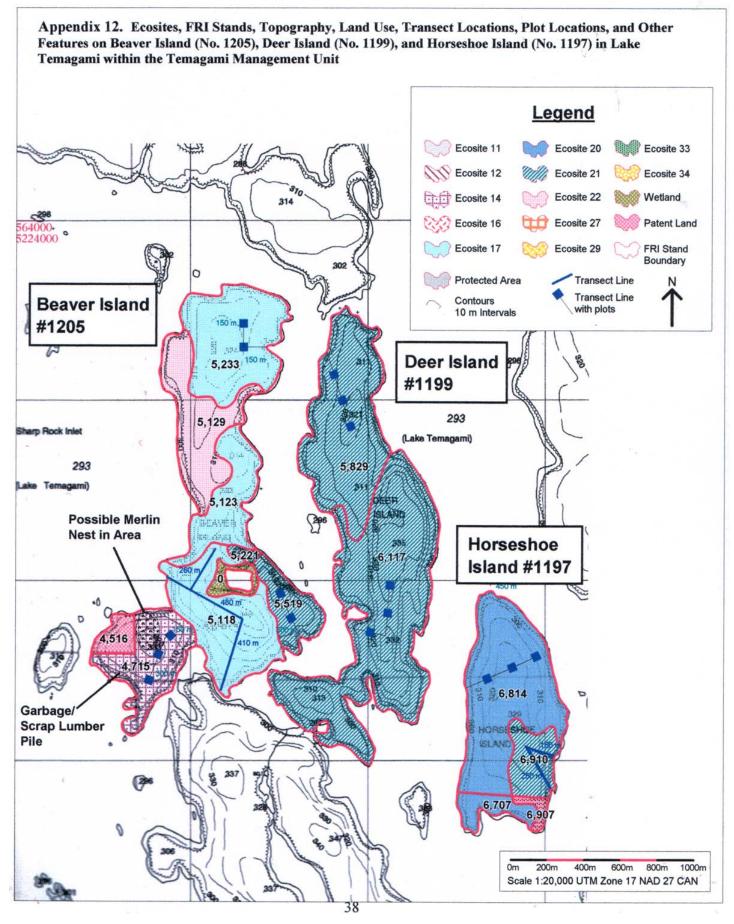














## Appendix 13.

## An Ecological Context for Old Growth Definition in Ontario

| Overstory<br>Species                                                                                | Ecosites      | Common Soil and<br>Site Description                                        | Associated Vegetation and Stand Structure<br>Characteristics                                                                                                                                                                                                                                                                                                                                                                                                               | Species-<br>specific<br>Old Growth<br>Onset Age<br>(yrs)                                                                 | Species-<br>specific<br>Old Growth<br>Duration<br>(yrs)                                                                                                                                                      | Ecosite-<br>specific<br>Old Growth<br>Onset<br>Age (yrs) | Ecosite-<br>specific<br>Old Growth<br>Duration<br>(yrs)              |
|-----------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|
| White Pine,<br>Red Pine,<br>Poplar, Jack<br>Pine, Red Oak                                           | ES 11 -14     | Dry to fresh, very<br>shallow to deep,<br>sandy to coarse<br>loamy soils   | Conifer dominated. White spruce and balsam fir<br>can be minor components of overstory. Shrubs<br>include beaked hazel, blueberry spp., bush<br>honeysuckle, fly honeysuckle, serviceberry spp.,<br>twinflower, and wintergreen. Low to moderate<br>number of herbs. Ground cover of feathermosses.                                                                                                                                                                        | Pw - 150<br>Pr - 140<br>Or - 110<br>Po - 100<br>Pj - 90                                                                  | $\begin{array}{l} Pw = 80 \text{ to } 160 \\ Pr = 50 \text{ to } 100 \\ Or = 70 \text{ to } 140 \\ Po = 40 \text{ to } 80 \\ Pj = 30 \text{ to } 50 \end{array}$                                             | ES12-140<br>ES13-120                                     | ES11-60 to 120<br>ES12-60 to 110<br>ES13-50 to 100<br>ES14-60 to 120 |
| Black Spruce,<br>Jack Pine,<br>White Pine,<br>Red Pine                                              | ES 15 &<br>16 | Dry to fresh, very<br>shallow to deep,<br>sandy to coarse<br>loarny soils  | Conifer dominated. Poplar and white birch can<br>be minor components of overstory. Shrubs<br>include blueberry spp., bush honeysuckle,<br>creeping snowberry, labrador tea, sheep laurel,<br>trailing arbutus, and twinflower. Herb poor.<br>Ground cover of feathermosses and lichens.                                                                                                                                                                                    | Pw – 150<br>Pr – 140<br>Pj – 100<br>Sb – 100                                                                             | Pw - 80 to 160<br>Pr - 50 to 100<br>Pj - 30 to 50<br>Sb - 30 to 50                                                                                                                                           |                                                          | ES15 – 30 to 50<br>ES16 – 40 to 70                                   |
| Poplar, White<br>Birch, White<br>Spruce, Balsam<br>Fir, Jack Pine,<br>Black Spruce,<br>Soft Maple   | ES 17-19      | Dry to moist, deep,<br>sandy to coarse<br>loamy soils                      | Hardwood-dominated mixedwoods. Shrubs<br>include beaked hazel, blueberry spp., bush<br>honeysuckle, fly honeysuckle, mountain maple,<br>twinflower, and wild raisin. Moderate number of<br>herbs. Ground cover of feathermosses and lichens.                                                                                                                                                                                                                               | $\begin{array}{l} Sw  -  110 \\ Sb  -  100 \\ Bw  -  90 \\ Po  -  90 \\ Pj  -  80 \\ Bf  -  70 \\ Ms  -  70 \end{array}$ | $\begin{array}{l} Sw & - \ 60 \ to \ 130 \\ Sb & - \ 30 \ to \ 50 \\ Bw & - \ 40 \ to \ 80 \\ Po & - \ 30 \ to \ 50 \\ Pj & - \ 30 \ to \ 50 \\ Bf & - \ 40 \ to \ 80 \\ Ms & - \ insuf. \ data \end{array}$ | ES18–100<br>ES19–90                                      | ES17 – 40 to 70<br>ES18 – 40 to 70<br>ES19 – 40 to 70                |
| White Pine,<br>White Cedar,<br>White Birch,<br>White Spruce,<br>Balsam Fir, Red<br>Pine, Poplar     | ES 20 -22     | Dry to moist, very<br>shallow to deep,<br>sandy to coarse<br>loarny soils  | Conifer-dominated mixedwoods. Shrubs include<br>beaked hazel, blueberry spp., bush honeysuckle,<br>creeping snowberry, mountain maple, fly<br>honeysuckle, showy mountain-ash, and<br>twinflower. Moderate number of herbs. Ground<br>cover of feathermosses, Sphagnum, and lichens.                                                                                                                                                                                       | Pw - 150<br>Pr - 140<br>Ce - 120<br>Sw - 110<br>Bw - 90<br>Po - 90<br>Bf - 70                                            | $\begin{array}{l} Pw = 80 \ to \ 160 \\ Pr = 50 \ to \ 100 \\ Ce = 70 \ to \ 140 \\ Sw = 60 \ to \ 130 \\ Bw = 40 \ to \ 80 \\ Po = 30 \ to \ 50 \\ Bf = 40 \ to \ 80 \end{array}$                           | ES21-120                                                 | ES20 – 60 to 120<br>ES21 – 60 to 120<br>ES22 – 50 to 110             |
| Hard Maple,<br>White Birch,<br>Poplar, Red<br>Oak, White<br>Pine,<br>Basswood,<br>American<br>Beech | ES 23 -27     | Dry to fresh, deep,<br>sandy to coarse<br>loamy soils, often<br>calcareous | Tolerant and mid-tolerant hardwood dominated.<br>Black ash, black cherry, ironwood, soft maple, yellow<br>birch, and white ash minor components of the<br>overstory. Shrubs include alternate-leaved dogwood,<br>beaked hazel, fly honeysuckle, leatherwood, maple-<br>leaved viburmum, mountain maple, striped maple,<br>and partridgeberry. Low to moderate number of<br>herbs (but rich in spring ephemerals). Ground cover<br>of ragged and hypnum mosses and lichens. | Pw - 150<br>Be - 150<br>Mh - 140<br>Bd - 120<br>Or - 120<br>Bw - 100<br>Po - 90                                          | $\begin{array}{l} Pw = 80 \ to \ 160 \\ Be = > 500+ \\ Mh = > 500+ \\ Bd = 40 \ to \ 80 \\ Or = 50 \ to \ 110 \\ Bw = 40 \ to \ 80 \\ Po = 30 \ to \ 50 \end{array}$                                         | ES24-120<br>ES25-130<br>ES26-130                         | ES23 > 300<br>ES24 > 400<br>ES25 > 500<br>ES26 > 500<br>ES27 > 300   |
| Eastern<br>Hemlock,<br>Hard Maple,<br>Yellow Birch,<br>White Cedar,<br>Soft Maple                   | ES 28- 30     | Dry to moist,<br>shallow to deep,<br>sandy to medium<br>loamy soils        | Tolerant hardwoods and mixedwoods. Beech,<br>poplar, white spruce minor components of the<br>overstory. Shrubs include beaked hazel, fly<br>honeysuckle, hobblebush, mountain maple, and<br>striped maple. Low to moderate number of<br>herbs. Ground cover of polytrichum and hypnum<br>mosses, liverworts, and lichens.                                                                                                                                                  | He – 180<br>By – 160<br>Mh – 140<br>Ce – 120<br>Ms – 100                                                                 | $\begin{array}{l} He -> 500+\\ By -> 500+\\ Mh -> 500+\\ Ce - 70 \ to \ 140\\ Ms - 40 \ to \ 80 \end{array}$                                                                                                 | ES29-140                                                 | ES28 > 500<br>ES29 > 500<br>ES30 > 500                               |
| Black Spruce,<br>White Cedar,<br>Larch, Balsam<br>Fir                                               | ES 31-33      | Very moist to wet,<br>deep, mineral and<br>organic soils                   | Conifer dominated. Shrubs include blueberry<br>spp., creeping snowberry, labrador tea, mountain<br>holly, mountain maple, sheep laurel, showy<br>mountain - ash, speckled alder, twinflower, and<br>wild raisin. Low to moderate number of herbs.<br>Ground cover dominated by Sphagnum and<br>feathermosses.                                                                                                                                                              | Ce - 150<br>Sb - 110<br>La - 90<br>Bf - 70                                                                               |                                                                                                                                                                                                              | ES32-120                                                 | ES31– Insuf. data<br>ES32 – Insuf. data<br>ES33 – Insuf. data        |
| Poplar, White<br>Cedar, Black<br>Ash, Soft<br>Maple, Yellow<br>Birch, Hard<br>Maple                 | ES 34&35      | Very moist, deep,<br>coarse loamy to<br>organic soils                      | Hardwood dominated. Shrubs include alternate-<br>leaved dogwood, beaked hazel, choke cherry,<br>dwarf raspberry, fly honeysuckle, mountain<br>maple, red currant, and wild red raspberry.<br>Herb rich.                                                                                                                                                                                                                                                                    | Ce - 150<br>By - 150<br>Mh - 130<br>Ab - 120<br>Ms - 90<br>Po - 80                                                       | $\begin{array}{l} Ce = lnsuf. \ data \\ By = > 500+ \\ Mh = > 500+ \\ Ab = 50 \ to \ 100 \\ Ms = 40 \ to \ 80 \\ Po = lnsuf. \ data \end{array}$                                                             |                                                          | ES34–Insuf.<br>data<br>ES35–Insuf.<br>data                           |

#### TABLE 3: OLD GROWTH AGE OF ONSET AND DURATION FOR FOREST Ecosites in Ecoregions 4E and 5E (Great Lakes-St. Lawrence Forest)

22 / Draft - Old Growth Forest Definitions for Ontario

Version 1.0 - March 2002 for public review and comment

|             | General        |                 |              | Geog             | graphic        | Variable  | s                        |                |                                     | F                                               | orest Co      | mmunity            | Variab | les                                                                                           |
|-------------|----------------|-----------------|--------------|------------------|----------------|-----------|--------------------------|----------------|-------------------------------------|-------------------------------------------------|---------------|--------------------|--------|-----------------------------------------------------------------------------------------------|
| lsle<br>No. | Island<br>Name | Private<br>Land | Area<br>(ha) | Perimeter<br>(m) | Shape<br>(P/A) | Isolation | Distance to<br>Shore (m) | No of<br>Steps | Old Growth<br>Based on<br>FRI age-% | Old Growth<br>(based on core<br>ages +FRI ages) | Rare          | Common<br>Ecosites |        | Tree Species Composition from Forest<br>Resource Inventory Maps                               |
| 25          | Bell           | Y               | 29           | 2606             | 88.3           | 10        | 10                       | 1              | 0.0%                                | 100%                                            |               | 21                 | 113    | 60% Ce, 20 % Pw, 10% Bw, 10% Sw                                                               |
| 234         | Temagami       | Y               | 522          | 23645            | 44.5           | 110       | 300                      | 3              | 95.2%                               | 100%                                            | 29, 33        | 17, 21             | 188    | 35% Pw, 12% Mh, 9% By, 8% Ce, 7% B,<br>7% Pr, 7% Po, 6% Bw, 4% Sw, 2% Ms,<br>2% Or, 1% Sb     |
| 312         | High Rock      | Y               | 204          | 9581             | 46.9           | 60        | 60                       | 2              | 39.2%                               | 100%                                            | 11, 20        |                    | 112    | 40% Pw, 28% Pr, 19% Bw, 8% Sb, 3%<br>Po, 2% Sw                                                |
| 388         | Papoose        | Y               | 133          | 10180            | 73.4           | 70        | 520                      | 10             | 100.0%                              | 100%                                            | 22, 34        | 21                 |        | 37% Pw, 18% Ce, 11% Ms, 8% Bw, 8%<br>Sb, 8% B, 5% Po, 5% By                                   |
| 472         |                | Y               | 57           | 5404             | 94.3           | 20        | 30                       | 1              | 100.0%                              | 100%                                            | 22            | 21                 | 156    | 32% Ce, 24% Pw, 16% Bw, 10% Sb, 10%<br>B, 4% Ms, 4% Sw                                        |
| 537         |                | Y               | 25           | 2897             | 114.5          | 20        | 150                      | 3              | 100.0%                              | 100%                                            |               | 21                 | 133    | 40% Ce, 30% Pw, 10% Bw, 10% Pr, 10%<br>Sb                                                     |
| 660         | Narrows        | Y               | 53           | 3492             | 64.4           | 10        | 10                       | 1              | 100.0%                              | 100%                                            | 12            |                    | 178    | 50% Pr, 30% Pw, 10% Bw, 10% Po                                                                |
| 665         |                | Y               | 37           | 4363             | 117.3          | 130       | 260                      | 1              | 100.0%                              | 100%                                            | 11            |                    | 133    | 30% Po, 20% Pr, 10% Pw, 10% Bw, 10%<br>Ce, 10% Sw, 10% B                                      |
| 725         |                | Y               | 29           | 3224             | 115.1          | 110       | 2600                     | 4              | 100.0%                              | 100%                                            |               | 21                 | 133    | 30% Bw, 20% Bw, 20% Ce, 10% Ms, 10% Po, 10% Sw                                                |
| 849         | Cattle         | Y               | 68           | 4716             | 69.2           | 100       | 830                      | 3              | 36.8%                               | 100%                                            |               | 17, 21             | 103    | 24% Bw, 23% Pw, 14% Ms, 13% Pr, 10%<br>Ce, 7% Po, 6% Sw, 2% Mh, 1% Ab                         |
| 964         | Bear           | Y               | 247          | 10860            | 38.9           | 100       | 500                      | 3              | 60.7%                               | NA                                              | 13, 33,<br>34 | 17, 21             | 1221   | 18% Bw, 17% Pw, 10% Ms, 10% Ce, 10%<br>Po, 10% Sw, 9% Pr, 4% Sb, 4% B, 3% Pj,<br>3% By, 2% Ab |
| 992         | Alexander      | Y               | 27           | 2762             | 101.5          | 120       | 1510                     | 6              | 100.0%                              | 100%                                            | 27            |                    | 103    | 30% Bw, 20% Mh, 10% Pw, 10% Po, 10% By, 10% Sb, 10% Sb                                        |
| 1063        |                | N               | 58           | 4066             | 73.4           | 20        | 60                       | 1              | 50.0%                               | 100%                                            | 33            | 21                 | 129    | 32% Ce, 18% Pw, 17% Bw, 9% By, 9%<br>Sb, 7% Ms, 5% Pr, 3% B                                   |
| 1088        |                | Y               | 101          | 7882             | 78.8           | 60        | 400                      | 3              | 0.0%                                | 100%                                            | 20            |                    | 103    | 38% Pw,8 20% Pr, 18% Sw, 10% Pw,<br>10% Po, 2% Ms, 2% By                                      |
| 1091        |                | Y               | 23           | 2289             | 97.8           | 60        | 300                      | 2              | 0.0%                                | 100%                                            |               | 16                 | 103    | 20% Pw, 20% Bw, 20% Pr, 20% Sb, 10%<br>Ms, 10% Ce                                             |
| 1104        |                | Y               | 66           | 4741             | 73.3           | 40        | 10                       | 1              | 100.0%                              | 100%                                            | 20            |                    | 173    | 30% Pr, 20% Pw, 10% Bw, 10% Ms, 10%<br>Ce, 10% Po, 10% Sw                                     |
| 1173        | Red Pine       | Y               | 26           | 2271             | 89.8           | 10        | 20                       | 1              | 100.0%                              | 100%                                            | 20            |                    | 163    | 40% Pw, 20% Bw, 10% Pr, 10% Po, 10%<br>Sw, 10% Sb                                             |
| 1197        | Horseshoe      | Y               | 58           | 3605             | 62.2           | 60        | 160                      | 1              | 79.3%                               | 100%                                            | 20            | 21                 | 180    | 34% Pr, 32% Bw, 27% Ce, 18% Pw, 16%<br>Sw                                                     |
| 1199        | Deer           | N               | 131          | 8386             | 73.6           | 10        | 10                       | 1              | 100.0%                              | 100%                                            |               | 21                 | 220    | 30% Pw, 23% Pr, 20% Bw, 10% Ce, 10%<br>B, 7% Sb                                               |
| 1205        | Beaver         | N               | 132          | 8453             | 62.8           | 10        | 20                       | 1              | 78.0%                               | 100%                                            | 14, 22        | 17, 21             | 109    | 34% Bw, 16% Pw, 16% Ms, 15% Po, 9%<br>Sw, 3% Ce, 3% Sb, 1% B, 2% Or, 1% Or                    |

Appendix 14. Summary of Features for Large Islands (>20 ha) on Lake Temagami

#### Appendix 15. Summary of Features for Large Islands (>20 ha) on Lakes other than Lake Temagami in the Temagami Management Unit

|             | General               |                 |              | G                | eograpl        | hic Varia | bles                     |                | F               | orest Community Variables                                       |
|-------------|-----------------------|-----------------|--------------|------------------|----------------|-----------|--------------------------|----------------|-----------------|-----------------------------------------------------------------|
| isie<br>No. | Island<br>Location    | Private<br>Land | Area<br>(ha) | Perimeter<br>(m) | Shape<br>(P/A) | Isolation | Distance to<br>Shore (m) | No of<br>Steps | Mean FRI<br>Age | Tree Species Composition from Forest<br>Resource Inventory Maps |
| M-01        | Makobe<br>Lake        | N               | 39           | 3037             | 77.872         | 130       | 340                      | 2              | 76              | 40% Sb, 30% Bw, 20% Sw, 10% Ce                                  |
| O-01        | Lake<br>Obabika       | N               | 28           | 2844             | 101.57         | 70        | 290                      | 3              | 123             | 30% Bw, 20% Sw, 10% Pw, 10% Ms, 10% Ce, 10% Po, 10% B           |
| E-04        | Lady Evelyn<br>L.     | N               | 37           | 2757             | 74.514         | 40        | 80                       | 1              | 98              | 40% Bw, 20% Po, 20% Sb, 10% Pw,<br>10% Sw                       |
| E-01        | Lady Evelyn<br>L.     | N               | 50           | 3297             | 65.94          | 250       | 520                      | 4              | 73              | 40% B, 30% Bw, 10% Pw, 10% Po,<br>10% Sb                        |
| E-02        | Lady Evelyn<br>L.     | N               | 28           | 3132             | 111.86         | 130       | 70                       | 2              | 88              | 30% Po, 20% Sb, 10% Pw, 10% Bw, 10% Ms, 10% Ce, 10% Pr          |
| E-03        | Lady Evelyn<br>L.     | N               | 47           | 4582             | 97.489         | 130       | 260                      | 4              | 98              | 40% Sb, 20% Pw, 20% Po, 10% Bw,<br>10% Sw                       |
| E-05        | Lady Evelyn<br>L.     | N               | 29           | 2853             | 98.379         | 80        | 270                      | 2              | 78              | 50% Bw, 20% B, 10% Ce, 10% Po,<br>10% Sw                        |
| E-06        | Lady Evelyn<br>L.     | N               | 23           | 1814             | 78.87          | 70        | 190                      | 2              | 83              | 40% Ce, 30% Bw, 10% Sw, 10% SB, 10% B                           |
| E-07        | Lady Evelyn<br>L.     | N               | 49           | 3591             | 73.286         | 260       | 830                      | 9              | 83              | 40% Bw, 20% Po, 20% Sw, 20% B                                   |
| E-08        | Lady Evelyn<br>L.     | N               | 44           | 3027             | 68.795         | 140       | 260                      | 1              | 82              | 40% Bw, 20% Sb, 10% Ce, 10% Po, 10% Sw, 10% B                   |
| C-01        | Cross Lake            | N               | 24           | 2473             | 103.04         | 80        | 150                      | 1              | 173             | 30% Pw, 20% Bw, 20% Ce, 10% Pr,<br>10% Sw, 10% Mh               |
| C-03        | Cross Lake            | N               | 216.5        | 11844            | 54.707         | 30        | 20                       | 1              | 148             | 20% Pw, 20% Bw, 20% Ce, 10% Ms, 10% Pr, 10% Po, 10% B           |
| C-02        | Cross Lake            | N               | 114          | 6914             | 60.649         | 40        | 80                       | 1              | 153             | 30% Pw, 20% Bw, 20% Ce, 10% Pr,<br>10% B                        |
| E-09        | Lady E. Lake          | N               | 278.4        | 7630             | 27.407         | 50        | 90                       | 1              | 80              | 40% Bw, 20% B, 10% Ce, 10% Po,<br>10% Sw, 10% Sb                |
| W-01        | Wasaksina<br>Lake     | N               | 66           | 4661             | 70.621         | 100       | 130                      | 1              | 117             | 50% Ce, 10% Pw, 10% By, 10% B,<br>10% Mh, 10% Sb                |
| W-02        | Wasaksina<br>Lake     | N               | 25           | 2707             | 108.28         | 30        | 70                       | 1              | 113             | 60% Ce, 20% B, 10% Pw, 10% By                                   |
| J-01        | Jumping<br>Cariboo L. | N               | 46           | 3849             | 83.674         | 80        | 140                      | 2              | 120             | 30% Ce, 20% Bw, 20% Ms, 20% Sw,<br>10% B                        |
| R-01        | Rabbit L.             | Y               | 22.4         | 2025             | 90.402         | 40        | 50                       | 1              | 103             | 50% Ce, 30% Pw, 10% Bw, 10% Sw                                  |
| F-01        | Fourbass L.           | N               | 92           | 5135             | 55.815         | 50        | 80                       | 1              | 135             | 30% Bw, 20% Ce, 20% B, 10% Pw, 10% Ms, 10% Sb                   |

Definitions

Ab – Black Ash B – Balsam Fir

Bw – White Birch By – Yellow Birch Ce – Cedar Or - Red Oak

Mh – hard maple (sugar maple) Ms – Soft Maple (red maple)

Pj – Jack Pine Po – Poplar

Pr – Red Pine Pw – White Pine Sb – Black Spruce

Sw – White Spruce

Appendix 16. Summary of Features for Forest Resource Inventory Stands on Large Islands (>20 ha) in the Temagami Management Unit

| I ema  | gann | IVI         | all | iaz         | ge               | ment Unit       |              |      |     |                      |              |    |    |    |    |    |          |    |    |    |    |    |    |    |    |
|--------|------|-------------|-----|-------------|------------------|-----------------|--------------|------|-----|----------------------|--------------|----|----|----|----|----|----------|----|----|----|----|----|----|----|----|
| Мар    | Isle | C<br>t<br>g |     | W<br>e<br>t | P<br>r<br>i<br>v | Location        | FRI<br>Stand | WKGP | Age | FRI<br>Old<br>Growth | Area<br>(ha) | Pw | Bw | Ms | Ce | Pr | Ро       | Ву | Sw | Sb | в  | Mh | Ab | Or | Pj |
| 59-521 | 25   | Y           |     |             | N                | Lake Temagami   | 14           | Ce   | 113 | N                    | 1            | 20 | 10 | 0  | 60 | 0  | 0        | 0  | 10 | 0  | 0  | 0  | 0  | 0  | 0  |
| 59-521 | 25   |             |     |             | Y                |                 | 15           | Се   | 113 | N                    | 2            | 20 | 10 | 0  | 60 | 0  | 0        | 0  | 10 | 0  | 0  | 0  | 0  | 0  | 0  |
| 58-521 | 25   |             |     |             | Y                |                 | 9414         | Ce   | 113 | N                    | 17           | 20 | 10 | 0  | 60 | 0  | 0        | 0  | 10 | 0  | 0  | 0  | 0  | 0  | 0  |
| 58-521 | 25   |             |     |             | N                |                 | 9714         | Ce   | 113 | N                    | 9            | 20 | 10 | 0  | 60 | 0  | 0        | 0  | 10 | 0  | 0  | 0  | 0  | 0  | 0  |
| 57-520 | 234  | Y           | 1   | 2           | Y                | Lake Temagami   | UCL          |      | 110 |                      | 25           | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 57-520 | 234  | ŀ           | ŀ   | -           | N                | Lake Fornagami  | 1808         | Po   | 113 | Y                    | 12           | 0  | 20 | 20 | 0  | 0  | 40       | 0  | 0  | 10 | 10 | 0  | 0  | 0  | 0  |
| 57-520 | 234  | $\square$   |     |             | N                |                 | 1809         | Pw   | 228 | Ý                    | 21           | 50 | 0  | 0  | 0  | 20 | <u> </u> | 0  | 0  | 10 | 10 | 10 | 0  | 0  | 0  |
| 57-520 | 234  | $\square$   |     |             | N                |                 | 2113         | Pr   | 227 | Y                    | 13           | 30 | 0  | 0  | 0  | 50 | <u> </u> | 0  | 0  | 10 | 10 | 0  | 0  | 0  | 0  |
| 57-519 | 234  |             |     |             | N                |                 | 2295         | Pw   | 213 | Y                    | 35           | 40 | 0  | 0  | 20 | 0  | 10       |    | 0  | 0  | 10 | 0  | 0  | 0  | 0  |
| 57-519 | 234  | $\square$   |     |             | N                |                 | 2299         | Pw   | 213 | Y                    | 0.9          | 40 | 10 | 0  | 20 | 0  | 0        | 0  | 10 | 0  | 20 | 0  | 0  | 0  | 0  |
| 57-520 | 234  |             |     |             | N                |                 | 2313         | Mh   | 227 | Y                    | 13           | 0  | 10 | 10 | 0  | 0  | 0        | 0  | 0  | 0  | 0  | 70 | 0  | 10 | 0  |
| 57-520 | 234  |             |     |             | N                |                 | 2402         | Po   | 113 | Y                    | 11           | 10 | 10 | 10 | 20 | 0  | 30       | 0  | 10 | 0  | 10 | 0  | 0  | 0  | 0  |
| 57-519 | 234  |             |     |             | N                |                 | 2499         | Pw   | 213 | Y                    | 3            | 30 | 0  | 10 | 10 | 0  | 20       | 0  | 10 |    | 10 | 0  | 0  | 0  | 0  |
| 57-520 | 234  |             |     |             | N                |                 | 2512         | Ce   | 133 | Y                    | 19           | 20 | 0  | 0  | 30 | 0  | 0        |    | 10 | 0  | 20 | 0  | 0  | 0  | 0  |
| 57-519 | 234  |             |     |             | N                |                 | 2598         | Po   | 113 | Y                    | 29           | 10 | 10 | 10 | 20 | 0  | 30       | 0  | 10 | 0  | 10 | 0  | 0  | 0  | 0  |
| 57-520 | 234  |             |     |             | N                |                 | 2704         | Pw   | 213 | Y                    | 34           | 40 | 10 | 0  | 20 | 0  | 0        | 0  | 10 | 0  | 20 | 0  | 0  | 0  | 0  |
| 57-520 | 234  |             |     |             | Y                |                 | 2726         | Pw   | 233 | Y                    | 9            | 50 | 0  | 0  | 0  | 10 |          |    | 10 | 0  | 0  | 20 | 0  | 0  | 0  |
| 57-519 | 234  |             |     |             | N                |                 | 2790         | Mh   | 139 | Y                    | 75           | 10 | 10 | 0  | 0  | 0  | 10       |    | 0  | 0  | 0  | 40 | 0  | 10 | 0  |
| 57-520 | 234  |             |     |             | N                |                 | 2818         | Pw   | 243 | Y                    | 86           | 70 | 0  | 0  | 0  | 20 | 0        | 0  | 0  | 0  | 0  | 10 | 0  | 0  | 0  |
| 57-519 | 234  |             |     |             | Y                |                 | 2887         | Mh   | 139 | Y                    | 1            | 10 | 10 | 0  | 0  | 0  | 10       |    | 0  | 0  | 0  | 40 | 0  | 10 | 0  |
| 57-520 | 234  | $\square$   |     |             | N                |                 | 2900         | Po   | 113 | Y                    | 2            | 10 | 10 | 10 | 20 | 0  | 30       |    | 10 | 0  | 10 | 0  | 0  | 0  | 0  |
| 57-520 | 234  | $\square$   |     |             | N                |                 | 3002         | Pw   | 213 | Y                    | 21           | 30 | 0  | 10 | 10 | 0  | 20       | 0  | 10 |    | 10 | 0  | 0  | 0  | 0  |
| 57-519 | 234  | $\square$   |     |             | N                |                 | 3297         | By   | 190 | Y                    | 6            | 0  | 10 | 0  | 30 | 0  | 0        | 40 | 0  | 0  | 20 | 0  | 0  | 0  | 0  |
| 57-520 | 234  | $\square$   |     |             | N                |                 | 3306         | By   | 190 | Y                    | 28           | 0  | 10 | 0  | 30 | 0  | 0        | 40 | 0  | 0  | 20 | 0  | 0  | 0  | 0  |
| 57-520 | 234  | $\square$   |     |             | N                |                 | 3425         | Pw   | 233 | Y                    | 47           | 60 | 10 | 0  | 0  | 10 |          | 0  | 10 | 0  | 10 | 0  | 0  | 0  | 0  |
| 57-520 | 234  |             |     |             | N                |                 | 3431         | Pw   | 233 | Y                    | 28           | 50 | 0  | 0  | 0  | 10 |          |    | 10 | 0  | 0  | 20 | 0  | 0  | 0  |
| 57-520 | 234  | $\square$   |     |             | Y                |                 | 3623         | Pw   | 233 | Y                    | 3            | 60 | 10 | 0  | 0  | 10 |          | 0  | 10 | 0  | 10 | 0  | 0  | 0  | 0  |
| 57-519 | 312  | Y           |     |             | Y                | Lake Temagami   | 1963         | Pr   | 129 | N                    | 1            | 40 | 0  | 0  | 0  | 50 | <u> </u> | 0  | 0  | 0  | 10 | 0  | 0  | 0  | 0  |
| 57-519 | 312  | †           |     |             | Ŷ                | Lano Pornaganni | 2160         | Pw   | 123 | N                    | 1            | 40 | 10 | 0  | 0  |    | 20       |    | 10 | 0  | 0  | 0  | 0  | 0  | 0  |
| 57-519 | 312  |             |     |             | N                |                 | 2168         | Bw   | 123 | Y                    | 46           | 20 | 30 | 0  | 20 |    | 10       |    | 10 | 0  | 0  | 0  | 0  | 0  | 0  |
| 57-519 | 312  |             |     |             | N                |                 | 2362         | Pw   | 123 | N                    | 51           | 40 | 10 | 0  | 0  | 20 | 20       |    | 10 | 0  | 0  | 0  | 0  | 0  | 0  |
| 57-519 | 312  |             |     |             | Υ                |                 | 2455         | Pw   | 123 | N                    | 2            | 40 | 10 | 0  | 0  | 20 | <u> </u> | 0  | 10 | 0  | 0  | 0  | 0  | 0  | 0  |
| 57-519 | 312  |             |     |             | Υ                |                 | 2472         | Bw   | 123 | Y                    | 2            | 20 | 30 | 0  | 20 |    | 10       |    | 10 | 0  | 0  | 0  | 0  | 0  | 0  |
| 57-519 |      |             |     |             | Ν                |                 | 2556         | Pw   | 123 | N                    | 9            | 40 | 10 |    | 0  |    | 20       |    | 10 |    | 0  | 0  | 0  | 0  | 0  |
| 57-519 | 312  |             |     |             | N                |                 | 3268         | Pr   | 153 | Y                    | 34           | 20 | 10 | 0  | 30 |    | 10       |    | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 57-519 | 312  |             |     |             | N                |                 | 3366         | Pw   | 68  | N                    | 58           | 40 | 20 | 0  | 0  |    | 0        | 0  | 0  | 10 |    | 0  | 0  | 0  | 0  |
| 56-518 | 388  | Y           |     | 7           | N                | Lake Temagami   |              | By   | 173 | Y                    | 21           | 0  | 0  | 20 | 20 |    | 10       |    |    | 0  | 20 | 0  | 0  | 0  | 0  |
| 56-518 | 388  | <u> </u>    |     | İ.          | N                |                 | 5288         | Ce   | 163 | Y                    | 20           | 10 |    | 10 |    | 0  | 20       |    | 10 |    | 10 |    | 0  | 0  | 0  |
| 56-518 | 388  | 1           |     |             | N                |                 | 5584         | Pw   | 193 | Y                    | 39           | 40 |    | 10 |    | 0  |          | 0  | 10 |    | 10 |    | 0  | 0  | 0  |
| 56-518 | 388  | 1           |     |             | Y                |                 | 5786         | Pw   | 193 | Y                    | 2            | 40 | 10 | 10 |    | 0  |          | 0  | 10 |    | 10 | 0  | 0  | 0  | 0  |
| 56-518 | 388  | 1           |     |             | N                |                 | 6179         | Pw   | 193 | Y                    | 51           | 60 | 10 | 10 | 10 | 0  | 0        | 0  | 10 | -  | 0  | 0  | 0  | 0  | 0  |
| 56-519 | 472  | Y           |     |             | Y                | Lake Temagami   |              | Ce   | 133 | Y                    | 2            | 20 | 20 | 0  | 40 | 0  |          | 0  | 0  |    | 10 |    | 0  | 0  | 0  |
| 56-519 |      | †           |     |             | N                | _s.c . emagain  | 5119         | Ce   | 133 | Y                    | 9            | 20 | 20 | ii | 40 | 0  |          | 0  | 0  |    | 10 |    | 0  | 0  | 0  |

Definitions CTG – Cottage(s) present on island

Lake – Lake on island (approximate area of lake in ha)

Wet – Wetland on island (approximate area of wetland in ha) WKGP – FRI Working Group (dominant tree species) Priv – Private Land (FRI stand)

Ab – Black Ash B – Balsam Fir Bw – White Birch By – Yellow Birch Ce – Cedar Or – Red Oak Mh – hard maple (sugar maple) Ms – Soft Maple (red maple) Pj – Jack Pine Po – Poplar Pr - Red Pine Pw – White Pine Sb – Black Spruce Sw – White Spruce

Appendix 16. Summary of Features for Forest Resource Inventory Stands on Large Islands (>20 ha) in the Temagami Management Unit (continued)

|                  |          | С  | L<br>a | w        |        |                   |              |      |     | FRI           | _                        |     |          |                                       |    |    |    |          |                    |      |    |           |            |         |          |
|------------------|----------|----|--------|----------|--------|-------------------|--------------|------|-----|---------------|--------------------------|-----|----------|---------------------------------------|----|----|----|----------|--------------------|------|----|-----------|------------|---------|----------|
| Мар              | Isle     | t  | k<br>e | e<br>t   | i<br>v | Location          | FRI<br>Stand | WKGP | 100 | Old<br>Growth | Area<br>(ha)             | Dur | Bw       | Me                                    | Ce | Pr | Po | Bv       | Sw                 | Sh   | в  | Mh        | <b>^</b> h | Or      | F        |
| 6-519            | 472      | g  | e      | -        | Y      | Location          | 5417         | Pw   | 193 | Y             | _(iia)<br>4              | 30  | 20       | 10                                    | 20 | 0  | 0  | 0        | 10                 | 0    | 10 | 0         | 0          | 0       | (        |
| 6-519            | 472      |    |        |          | N      |                   | 5421         | Pw   | 193 | Y             | 18                       | 30  | 20       | 10                                    | 20 | 0  | 0  | 0        | 10                 | 0    | 10 | 0         | 0          | 0       |          |
| 6-519            | 472      |    |        | $\vdash$ | Y      |                   | 5616         | Ce   | 133 | Y             | 6                        | 20  | 10       | 0                                     | 40 | 0  | 0  | 0        | 0                  | 20   | 10 | 0         | 0          | 0       |          |
| 6-519            | 472      | -  | -      | -        | N      |                   | 5718         | Ce   | 133 | Y             | 16                       | 20  | 10       | 0                                     | 40 | 0  | 0  | 0        | 0                  | 20   | 10 | 0         | 0          | 0       |          |
| 6-519            | 472      |    |        | -        | Y      |                   | 5914         | Ce   | 133 | Y             | 2                        | 20  | 10       | 0                                     | 40 | 0  | 0  | 0        | 0                  | 20   | 10 | 0         | 0          | 0       |          |
| 6-519            | 537      | N  | -      | -        | N      | Lake Temagami     | 5231         | Ce   | 133 | T<br>Y        | 25                       | 30  | 10       | 0                                     | 40 | 10 | 0  | 0        | 0                  | 10   | 0  | 0         | 0          | 0       | 1        |
|                  | <u> </u> | Y  | -      | -        | Y      | <u>v</u>          |              | Pr   | 178 | Y<br>Y        |                          | 30  | 1        | 0                                     |    | 50 |    | 0        | 0                  | 0    | 0  | 0         | 0          | 0       |          |
| 6-519            |          | ľ  | -      | -        | -      | Lake Temagami     | 7980         |      |     |               | 0.7                      | -   | 10       | <u> </u>                              | 0  | 50 | 10 | <u> </u> | <u> </u>           |      |    |           |            | 0       | -        |
| 56-519           | 660      | -  | -      | -        | N      |                   | 8379         | Pr   | 178 | Y             | 50                       | 30  | 10       | 0                                     | 0  |    |    | 0        | 0                  | 0    | 0  | 0         | 0          | -       |          |
| 56-519           | 660      |    | -      | -        | Y      |                   | 8473         | Pr   | 178 | Y             | 2                        | 30  | 10       | 0                                     | 0  | 50 |    | 0        | 0                  | 0    | 0  | 0         | 0          | 0       |          |
| 56-519           | 665      | Y  | -      | -        | Y      | Lake Temagami     | 9568         | Po   | 133 | Y             | 13                       | 10  | 10       | 0                                     | 10 | 20 |    | 0        | 10                 | 0    | 10 | 0         | 0          | 0       |          |
| 56-519           | 665      |    | -      | -        | N      |                   | 9671         | Po   | 133 | Y             | 20                       | 10  | 10       | 0                                     | 10 | 20 | -  | 0        | 10                 | 0    | 10 | 0         | 0          | 0       |          |
| 56-519           | 665      | _  |        |          | Y      |                   | 9673         | Po   | 133 | Y             | 1                        | 10  | 10       | 0                                     | 10 | 20 |    | 0        | 10                 | 0    | 10 | 0         | 0          | 0       |          |
| 56-519           | 665      |    |        |          | Y      |                   | 9775         | Po   | 133 | Y             | 3                        | 10  | 10       | 0                                     | 10 | 20 | 1  | 0        | 10                 | 0    | 10 | 0         | 0          | 0       |          |
| 57-519           | 725      | Y  |        |          | N      | Lake Temagami     | 1193         | Bw   | 133 | Y             | 27                       | 20  |          | 10                                    | 20 | 0  | 10 | 0        | 10                 | 0    | 0  | 0         | 0          | 0       |          |
| 57-519           | 725      | _  |        |          | Y      |                   | 1598         | Bw   | 133 | Y             | 2                        | 20  | 30       | 10                                    | 20 | 0  | 10 | 0        | 10                 | 0    | 0  | 0         | 0          | 0       |          |
| 56-520           | 849      | Y  |        |          | Y      | Lake Temagami     | 8901         | Pw   | 103 | N             | 0.7                      | 30  | <u> </u> | 10                                    | 10 | 20 | -  | 0        | 10                 | 0    | 0  | 0         | 0          | 0       |          |
| 6-520            | 849      | _  |        |          | N      |                   | 9203         | Pw   | 103 | N             | 40                       | 30  | 20       | 10                                    | 10 | 20 | 1  | 0        | 10                 | 0    | 0  | 0         | 0          | 0       |          |
| 56-519           | 849      |    |        |          | N      |                   | 9399         | Bw   | 103 | Y             | 9                        | 10  | 30       | 20                                    | 10 | 0  | 20 | 0        | 0                  | 0    | 0  | 0         | 10         | 0       |          |
| 56-520           | 849      |    |        |          | Y      |                   | 9509         | Pw   | 103 | N             | 0.7                      | 30  | 20       | 10                                    | 10 | 20 | 0  | 0        | 10                 | 0    | 0  | 0         | 0          | 0       |          |
| 56-520           | 849      |    |        |          | N      |                   | 9601         | Bw   | 103 | Y             | 16                       | 10  | 30       | 20                                    | 10 | 0  | 20 | 0        | 0                  | 0    | 0  | 10        | 0          | 0       |          |
| 56-520           | 849      |    |        |          | Y      |                   | 9704         | Bw   | 103 | Y             | 0.4                      | 10  | 30       | 20                                    | 10 | 0  | 20 | 0        | 0                  | 0    | 0  | 10        | 0          | 0       |          |
| 56-520           | 849      |    |        |          | Y      |                   | 9706         | Pw   | 103 | N             | 1                        | 30  | 20       | 10                                    | 10 | 20 | 0  | 0        | 10                 | 0    | 0  | 0         | 0          | 0       |          |
| 56-520           | 849      |    |        |          | Y      |                   | 9804         | Pw   | 103 | N             | 0.2                      | 30  | 20       | 10                                    | 10 | 20 | 0  | 0        | 10                 | 0    | 0  | 0         | 0          | 0       |          |
| 57-520           | 964      | Y  |        |          |        | Lake Temagami     | 539          | Pw   | 163 | Y             | 85                       | 30  | 10       | 10                                    | 0  | 20 | 10 | 0        | 10                 | 0    | 10 | 0         | 0          | 0       |          |
| 57-520           | 964      |    |        |          |        |                   | 735          | Ce   | 133 | N             | 25                       | 0   | 0        | 10                                    | 30 | 0  | 10 | 20       | 10                 | 20   | 0  | 0         | 0          | 0       |          |
| 57-520           | 964      |    |        |          |        |                   | 828          | Bw   | 123 | Y             | 22                       | 0   | 40       | 20                                    | 0  | 0  | 10 | 10       | 20                 | 0    | 0  | 0         | 0          | 0       |          |
| 57-520           | 964      |    |        |          |        |                   | 832          | Bw   | 48  | N             | 38                       | 10  | 30       | 10                                    | 10 | 0  | 20 | 0        | 0                  | 10   | 0  | 0         | 10         | 0       | (        |
| 57-520           | 964      |    |        |          |        |                   | 1240         | Pw   | 163 | Y             | 19                       | 40  | 20       | 10                                    | 0  | 10 | 10 | 0        | 10                 | 0    | 0  | 0         | 0          | 0       |          |
| 57-520           | 964      |    |        |          |        |                   | 1434         | Ce   | 53  | N             | 21                       | 10  | 20       | 0                                     | 40 | 0  | 0  | 0        | 20                 | 0    | 0  | 0         | 0          | 0       | 1        |
| 57-520           | 964      |    |        |          |        |                   | 1937         | Pi   | 48  | N             | 13                       | 10  |          | 10                                    | 0  | 0  | 0  | 0        | 0                  | 10   | 0  | 0         | 0          | 0       | 5        |
| 57-520           | 964      |    |        |          |        |                   | 2034         | Ce   | 133 | Y             | 10                       | 20  | 1        | 0                                     | 40 | 0  | 0  | 0        | 10                 | 0    | 10 | 0         | 0          | 0       |          |
| 56-520           | 964      |    |        |          |        |                   | 9838         | Pr   | 163 | Y             | 12                       | 0   | 20       | 10                                    | 10 | 30 | 10 | 0        | 10                 | 0    | 10 | 0         | 0          | 0       |          |
| 56-520           | 964      |    |        |          |        |                   | 9940         | Pw   | 163 | Y             | 0.3                      | 30  | 10       | 10                                    | 0  | 20 | 10 | 0        | 10                 | 0    | 10 | 0         | 0          | 0       |          |
| 56-520           | 964      |    |        |          |        |                   | 9943         | Pw   | 163 | Y             | 2                        | 30  | 10       | 10                                    | 0  | 20 | 10 | 0        | 10                 | 0    | 10 | 0         | 0          | 0       |          |
| 56-520           | 992      | Y  |        |          | Y      | Lake Temagami     | 8629         | Bw   | 103 | Y             | 6                        |     | 30       | <u> </u>                              | 0  |    |    |          | 10                 |      |    | 20        |            | 0       | (        |
| 56-520           | 992      | +· |        | 1        | N      |                   | 8827         | Bw   | 103 | Y             | 17                       |     | 30       | <u> </u>                              | 0  | 0  |    |          | 10                 |      |    | 20        |            | 0       |          |
| 56-520           | 992      | +  | -      | -        | Y      |                   | 8922         | Bw   | 103 | Y             | 1                        | 1   | 30       | · · · · · · · · · · · · · · · · · · · | 0  | 0  |    | i        | 10                 |      |    | 20        |            | 0       |          |
| 56-520<br>56-520 | 992      | +  | -      | $\vdash$ | Y      |                   | 9025         | Bw   | 103 | Y             | 3                        | 1   | 30       |                                       | 0  | 0  |    |          | 10                 |      |    |           |            | 0       |          |
|                  |          | N  | -      | $\vdash$ | N      | l ako Tomogomi    |              |      | 83  |               |                          | 1   | 30       | · · · · · · · · · · · · · · · · · · · |    |    | 1  |          | 1                  |      |    |           |            |         |          |
| 57-520           | 1063     |    | -      | +        | -      | Lake Temagami     | 2149         | Bw   |     | N             | 21                       | 1   |          |                                       |    | 0  | 0  |          | 0                  |      |    | 0         | 0          | 0       | -        |
| 57-520           | 1063     |    | -      | -        | N      |                   | 2355         | Pw   | 163 | Y             | 21                       | -   | 10       |                                       | 30 |    |    |          | 0                  |      |    |           | 0          | 0       | $\vdash$ |
| 57-520           |          |    |        |          |        | present on island | 2652         | Pw   | 163 |               | 8<br>Black As<br>alsam F | sh  | 10       |                                       | 30 | 10 | Ms | – S      | 0<br>oft N<br>ck F | Ларl |    | 0<br>ed m | 0<br>Daple | 0<br>e) |          |

 Initions
 CTG - Cottage(s) present on Island
 Ab - Black Ash

 Lake - Lake on Island (approximate area of lake in ha)
 B - Balsam Fir

 Wet - Wetland on Island (approximate area of wetland in ha)
 B - Balsam Fir

 WKGP - FRI Working Group (dominant tree species)
 Bw - White Birch

 Priv - Private Land (FRI stand)
 Ce - Cedar

 Or - Red Oak
 Mh - hard maple (sugar maple)

Ms – Soft Maple (red maple) Pj – Jack Pine Po – Poplar Pr – Red Pine Pw – White Pine Sb – Black Spruce Sw – White Spruce

| Мар       | Isle             | 0                    | <br> <br> <br> | L<br>aV<br>ket | VI<br>VI   | P<br>r<br>i    | ent Unit (cont<br>Location                                                          | FRI Stand                               | WKGP                 | Age | FRI<br>Old<br>Growth    | Area<br>(ha)                              | Pw                             | Bw | Ms                                    | Ce | Pr | Po               | Bv                 | Sw                            | Sb                | в         | Mh | Ab | Or | Pj |
|-----------|------------------|----------------------|----------------|----------------|------------|----------------|-------------------------------------------------------------------------------------|-----------------------------------------|----------------------|-----|-------------------------|-------------------------------------------|--------------------------------|----|---------------------------------------|----|----|------------------|--------------------|-------------------------------|-------------------|-----------|----|----|----|----|
| 57-520    | 1063             |                      | T              |                | N          |                |                                                                                     | 2655                                    | Ce                   | 128 | N                       | 8                                         | 0                              | 10 |                                       | 70 | 0  | 0                | 0                  | 0                             | 0                 | 20        | 0  | 0  | 0  | 0  |
| 56-520    | 1088             |                      | 1              |                | Ì          | Y              | Lake Temagami                                                                       | 7460                                    | Pw                   | 103 | N                       | 3                                         | 30                             |    | <u> </u>                              | 0  | 20 | 10               | 10                 | -                             | 0                 | 0         | 0  | 0  | 0  | 0  |
| 56-520    | 1088             |                      | Ť              |                | N          | ٧              |                                                                                     | 7759                                    | Pw                   | 103 | N                       | 22                                        | 30                             |    | <u> </u>                              | 0  | 20 | 10               | 10                 | 10                            | 0                 | 0         | 0  | 0  | 0  | 0  |
| 56-520    | 1088             |                      | Ť              |                | -          | ١              |                                                                                     | 8653                                    | Pw                   | 103 | N                       | 76                                        | 40                             |    |                                       | 0  | 20 | 10               | 0                  | 20                            | 0                 | 0         | 0  | 0  | 0  | 0  |
| 56-520    | 109 <sup>.</sup> | 1                    | 1              |                | ١          | ١              | Lake Temagami                                                                       | 7565                                    | Pr                   | 103 | N                       | 19                                        | 20                             | 20 |                                       | 10 | 20 | 0                | 0                  | 0                             | 20                | 0         | 0  | 0  | 0  | 0  |
| 56-520    | 109 <sup>.</sup> | 1                    | Ť              |                | 1          | Y              |                                                                                     | 7763                                    | Pr                   | 103 | N                       | 2                                         | 20                             | 1  |                                       | 10 | 20 | 0                | 0                  | 0                             | 20                | 0         | 0  | 0  | 0  | 0  |
| 56-520    | 109 <sup>.</sup> | 1                    | Ť              |                | Ì          | Y              |                                                                                     | 7965                                    | Pr                   | 103 | N                       | 2                                         | 20                             | 1  |                                       | 10 | 20 | 0                | 0                  | 0                             | 20                | 0         | 0  | 0  | 0  | 0  |
| 56-520    | 1104             | 4 \                  | 1              |                | N          | ١              | Lake Temagami                                                                       | 8969                                    | Pr                   | 173 | Y                       | 66                                        | 20                             | 1  | 10                                    | 10 | 30 | 10               | 0                  | 10                            | 0                 | 0         | 0  | 0  | 0  | 0  |
| 56-521    | 117:             | 3 1                  | 1              |                | Ì          | Y              | Lake Temagami                                                                       | 8262                                    | Pw                   | 163 | Y                       | 2                                         | 40                             | -  |                                       | 0  | 10 | 10               | 0                  | 10                            | 10                | 0         | 0  | 0  | 0  | 0  |
| 56-521    | 117:             |                      | Ť              |                | ٢          | ١              |                                                                                     | 8459                                    | Pw                   | 163 | Y                       | 22                                        | 40                             |    |                                       | 0  | 10 | 10               | 0                  | 10                            |                   | 0         | 0  | 0  | 0  | 0  |
| 56-521    | 117:             |                      | Ť              |                | -          | Y              |                                                                                     | 8556                                    | Pw                   | 163 | Y                       | 2                                         | 40                             |    | 0                                     | 0  | 10 | 10               | 0                  | 10                            |                   | 0         | 0  | 0  | 0  | 0  |
| 56-522    | 1197             | 7 1                  | 1              |                | Ì          | Y              | Lake Temagami                                                                       | 6707                                    | Pr                   | 213 | Y                       | 7                                         | 20                             |    | 0                                     | 0  | 40 | 0                | 0                  | 20                            | 0                 | 0         | 0  | 0  | 0  | 0  |
| 56-522    | 119              |                      | +              |                | +          | N              |                                                                                     | 6814                                    | Pr                   | 213 | Y                       | 39                                        | 20                             | 1  | <u> </u>                              | 0  | 40 | 0                | 0                  | 20                            | 0                 | 0         | 0  | 0  | 0  | 0  |
| 56-522    | 119              |                      | Ť              |                | _          | Y              |                                                                                     | 6907                                    | Bw                   | 53  | N                       | 2                                         | 10                             |    | <u> </u>                              | 0  | 10 | 0                | 0                  | 0                             | 0                 | 0         | 0  | 0  | 0  | 0  |
| 56-522    | 119              |                      | t              |                |            | N              |                                                                                     | 6910                                    | Bw                   | 53  | N                       | 10                                        | 10                             | 1  | 0                                     | 0  | 10 | 0                | 0                  | 0                             | 0                 | 0         | 0  | 0  | 0  | 0  |
| 56-522    | 1199             |                      | J              |                | +          | N              | Lake Temagami                                                                       | 5829                                    | Pr                   | 234 | Y                       | 41                                        | 30                             | 1  | <u> </u>                              | 10 | 30 | 0                | 0                  | 0                             | 0                 | 10        |    | 0  | 0  | 0  |
| 56-522    | 1199             |                      | 1              |                | -          | N              |                                                                                     | 6117                                    | Pw                   | 213 | Y                       | 90                                        | 30                             |    |                                       | 10 | 20 | 0                | 0                  | 0                             |                   | 10        |    | 0  | 0  | 0  |
| 56-522    | 120              |                      | J              |                |            | ١              | Lake Temagami                                                                       | 4516                                    | Pw                   | 148 | Y                       | 4                                         | 30                             |    |                                       | 10 | 0  | 10               | 0                  | 10                            |                   | 0         | 0  | 0  | 10 | 0  |
| 56-522    | 120              |                      | 1              |                | -          | N              |                                                                                     | 4715                                    | Pw                   | 148 | Y                       | 19                                        | 30                             | 1  |                                       | 10 | 0  | 10               | 0                  | 10                            | <u> </u>          | 0         | 0  | 0  | 10 | 0  |
| 56-522    | 120              |                      | t              |                | -          | v              |                                                                                     | 5118                                    | Bw                   | 73  | N                       | 29                                        | -                              | 40 | · · · · · · · · · · · · · · · · · · · | 0  | 0  | 10               | 0                  | 20                            |                   | 0         | 0  | 0  | 0  | 0  |
| 56-522    | 120              |                      | ╈              |                | ۱          | -              |                                                                                     | 5123                                    | Bw                   | 93  | Y                       | 17                                        | 0                              | 1  | 20                                    | 0  | 0  | 20               | 0                  | 10                            | 0                 | 0         | 0  | 0  | 0  | 0  |
| 56-522    | 120              |                      | t              |                | N          | -              |                                                                                     | 5129                                    | Bw                   | 93  | Y                       | 21                                        | 0                              | -  | 20                                    | 10 | 0  | 10               | 0                  | 0                             |                   | 10        |    | 0  | 0  | 0  |
| 56-522    | 120              |                      | t              |                | ۱          | -              |                                                                                     | 5221                                    | Pw                   | 223 | Ý                       | 1                                         | 40                             |    | <u> </u>                              | 0  | 10 | 0                | 0                  | 20                            |                   | 0         | 0  | 0  | 0  | 0  |
| 56-522    | 120              |                      | Ť.             | 1 1            | -          | -              |                                                                                     | 5233                                    | Po                   | 93  | Ý                       | 31                                        | 20                             |    |                                       | 0  | 0  | 30               | 0                  | 0                             | 0                 | 0         | 0  | 0  | 0  | 0  |
| 56-522    | 120              |                      | ╈              | <u> </u>       | ۱          | -              |                                                                                     | 5519                                    | Pw                   | 223 | Y                       | 10                                        | 40                             |    | · · · · · · · · · · · · · · · · · · · | 0  | 10 | 0                | 0                  | 20                            |                   | 0         | 0  | 0  | 0  | 0  |
| 54-525    | M-0              |                      | ╈              | 1              | N          |                | Makobe Lake                                                                         | 4043                                    | Bw                   | 73  | NA                      | 18                                        | 10                             | 1  |                                       | 0  | 20 | 0                | 0                  | 20                            | 0                 | 0         | 0  | 0  | 0  | 0  |
| 54-525    | M-0              |                      | ╈              | +              |            | ١              |                                                                                     | 4341                                    | Sb                   | 78  | NA                      | 21                                        | 0                              | 10 | 0                                     | 0  | 0  | 0                | 0                  | 10                            |                   | 0         | 0  | 0  | 0  | 0  |
| 55-520    | 0-0              |                      | ╈              |                | r          | ١              | Lake Obabika                                                                        | 2642                                    | Bw                   | 123 | NA                      | 22                                        | 10                             |    |                                       | 10 | 0  | 10               | 0                  | 20                            | 0                 | 10        |    | 0  | 0  | 0  |
| 55-520    | 0-0              |                      | t              |                | ٢          | ١              | 2010 0 000110                                                                       | 2847                                    | Bw                   | 123 | NA                      | 5                                         | 10                             |    |                                       | 10 | 0  | 10               | 0                  | 20                            | 0                 | 10        |    | 0  | 0  | 0  |
| 55-523    | E-04             |                      | t              |                | ٢          | ١              | Lady Evelyn L.                                                                      | 9366                                    | Bw                   | 98  | NA                      | 37                                        | 10                             | 1  | 0                                     | 0  | 0  | 20               | 0                  | 10                            |                   | 0         | 0  | 0  | 0  | 0  |
| 56-523    | E-0'             |                      | ╈              |                | r          | ١              | Lady Evelyn L.                                                                      | 292                                     | Bw                   | 73  | NA                      | 20                                        | 10                             |    |                                       | 0  | 0  | 20               | 0                  | 0                             | 0                 | 20        |    | 0  | 0  | 0  |
| 56-523    | E-0'             |                      | t              |                | ٢          | ١              | 2003 210.3.1 2.                                                                     | 396                                     | B                    | 68  | NA                      | 24                                        | 10                             |    | 0                                     | 0  | 0  | 0                | 0                  | 0                             | 10                | · · · · · |    | 0  | 0  | 0  |
| 55-523    | E-0'             |                      | ╈              |                | r          | ١              |                                                                                     | 9996                                    | Bw                   | 73  | NA                      | 4                                         | 0                              | 40 | 0                                     | 0  | 0  | 20               | 0                  | 0                             | 0                 | 0         | 0  | 0  | 0  | 0  |
| 55-523    | E-0'             |                      | ╈              |                | ١          | ١              |                                                                                     | 9998                                    | B                    | 68  | NA                      | 2                                         | 0                              | 20 | 0                                     | 0  | 0  | 0                | 0                  | 0                             | 0                 | 60        | 0  | 0  | 0  | 0  |
| 56-523    | E-02             |                      | ╈              | +              | 1          | ١              | Lady Evelyn L.                                                                      | 1589                                    | Po                   | 88  | NA                      | 28                                        |                                | 10 | -                                     | 10 | -  | 30               | 0                  | <u> </u>                      | 20                |           | 0  | 0  | 0  | 0  |
| 56-523    | E-03             |                      | $\dagger$      | +              | _          | 1              | Lady Evelyn L.                                                                      | 469                                     | Sb                   | 98  | NA                      | 47                                        | 20                             |    |                                       | 0  | 0  | 20               | 0                  | 1                             | 40                |           | 0  | 0  | 0  | 0  |
| 56-524    | E-0              |                      | $\dagger$      | +              | _          | 1              | Lady Evelyn L.                                                                      | 2176                                    | Bw                   | 78  | NA                      | 29                                        | 0                              |    |                                       | 10 | 0  | 10               | 0                  |                               |                   | 20        | -  | 0  | 0  | 0  |
| 56-524    | E-06             |                      | $\dagger$      | +              | _          | 1              | Lady Evelyn L.                                                                      | 4281                                    | Ce                   | 83  | NA                      | 23                                        | 0                              | 30 |                                       | 40 | 0  | 0                | 0                  |                               | 10                |           |    | 0  | 0  | 0  |
| 56-524    | E-07             |                      | $\dagger$      | +              | _          | 1              | Lady Evelyn L.                                                                      | 331                                     | Bw                   | 83  | NA                      | 49                                        | 0                              | 40 | · · · · · · · · · · · · · · · · · · · | 0  | 0  | 20               | 0                  | 1                             | _                 | 20        | -  | 0  | 0  | 0  |
| 56-524    | E-08             |                      | $\dagger$      | +              | _          | 1              | Lady Evelyn L.                                                                      | 2505                                    | Bw                   | 53  | NA                      | 16                                        | 0                              | 1  | · · · · · · · · · · · · · · · · · · · | 10 | 0  | 0                | 0                  |                               | 10                |           |    | 0  | 0  | 0  |
| 56-524    | E-08             |                      | +              | +              |            | N              | Ludy Lvolyn L.                                                                      | 2708                                    | Sb                   | 98  | NA                      | 28                                        | 0                              | 1  |                                       | 10 | 0  | 10               | -                  | 20                            |                   | -         | -  | 0  | 0  | 0  |
| Definitio | ns (             | CTG<br>Lake<br>Wet - | - \<br>- \     | Lak<br>Vet     | tta<br>e o | ge<br>on<br>nd | e(s) present on isla<br>island (approxima<br>on island (approx<br>Vorking Group (do | and<br>ate area of lak<br>imate area of | ke in ha)<br>wetland |     | Ab – I<br>B – B<br>Bw – | Black A<br>alsam F<br>White E<br>Yellow E | sh<br><sup>T</sup> ir<br>Birch |    |                                       | 10 |    | Ms<br>Pj -<br>Po | – S<br>– Ja<br>– P | oft M<br>ck F<br>opla<br>ed P | Mapl<br>Pine<br>r |           |    |    |    |    |

| Appendix 16. | Summary of Features for Forest Resource Inventory Stands on Large Islands (>20 ha) in the |
|--------------|-------------------------------------------------------------------------------------------|
| Temagami Ma  | nagement Unit (continued)                                                                 |

WKGP – FRI Working Group (c Priv – Private Land (FRI stand) minant tree species)

- By Yellow Birch Ce Cedar Or Red Oak Mh hard maple (sugar maple)
- Pr Red Pine Pw White Pine Sb Black Spruce Sw White Spruce

| Temag            | gami Maı     | nag  | ger  | ne   | nt      | Unit (continue      | ed)          |          |                  |              |             |           |           |          |            |           |           |           |                 |          |          |      |           |    |                |
|------------------|--------------|------|------|------|---------|---------------------|--------------|----------|------------------|--------------|-------------|-----------|-----------|----------|------------|-----------|-----------|-----------|-----------------|----------|----------|------|-----------|----|----------------|
|                  |              |      | L    |      | Ρ       |                     |              |          |                  |              |             |           |           |          |            |           |           |           |                 |          |          |      |           |    |                |
|                  |              | C    | a    | w    | r       |                     |              |          |                  | FRI          | _           |           |           |          |            |           |           |           |                 |          |          |      |           |    |                |
|                  | 1-1-         | t    | k    | e    | i       |                     | FRI          |          | •                | Old          | Area        |           | _         |          | <b>a</b> . | -         |           | _         | ~               | <b>.</b> | _        |      |           |    |                |
| Map<br>57-524    | Isle<br>E-09 | g    | е    | t    | V<br>N  | Location            | Stand<br>61  | Bw       | <b>Age</b><br>93 | Growth<br>NA | (ha)<br>0.4 | <b>PW</b> | <b>Bw</b> | -        | <b>Ce</b>  | <b>Pr</b> | <b>PO</b> | <b>By</b> | <b>Sw</b><br>10 | 0        | в<br>20  |      | <b>Ab</b> | 0r | <b>Pj</b><br>0 |
| 57-524           | E-09<br>E-09 | -    | -    | -    | N       | Lady Evelyn L.      | 72           | Bw       | 78               | NA           | 0.4         | 0         | 10        |          | 0          | 0         | 0         | 0         |                 |          | 20<br>60 |      | 0         | 0  | 0              |
| 57-524           | E-09<br>E-09 | -    | -    | -    | N       |                     | 165          | Bw       | 88               | NA           | 25          | 10        |           |          | 0          | 0         | 0         | 0         | _               |          | 20       |      | 0         | 0  | 0              |
| 57-524           | E-09<br>E-09 | -    | -    | -    | N       |                     | 170          | B        | 78               | NA           | 4           | 0         | 10        |          | 0          | 0         | 0         | 0         |                 |          | 60       |      | 0         | 0  | 0              |
| 57-524           | E-09         | -    |      |      | N       |                     | 280          | B        | 83               | NA           | 8           | 0         | 20        | 0        | 20         | 0         | 10        | 0         | _               | 10       |          |      | 0         | 0  | 0              |
| 57-524           | E-09         |      | -    |      | N       |                     | 377          | Bw       | 63               | NA           | 39          | 0         | 80        | 0        | 0          | 0         | 0         | 0         | 0               |          | 10       |      | 0         | 0  | 0              |
| 57-524           | E-09         | -    |      |      | N       |                     | 571          | Bw       | 73               | NA           | 46          | 0         | 40        | 0        | 10         | 0         | 10        | 0         | -               |          | 20       |      | 0         | 0  | 0              |
| 56-524           | E-09         |      |      |      | N       |                     | 9464         | Sw       | 83               | NA           | 21          | 0         | 20        | 0        | 0          | 0         | 10        | 0         |                 |          | 10       |      | 0         | 0  | 20             |
| 56-524           | E-09         | -    |      |      | N       |                     | 9475         | B        | 83               | NA           | 66          | 0         | 20        | 0        | 20         | 0         | 10        | 0         |                 | 10       |          |      | 0         | 0  | 0              |
| 56-524           | E-09         | -    |      |      | N       |                     | 9860         | Bw       | 93               | NA           | 31          | 0         | 50        |          | 10         | 0         | 10        | 0         | 10              |          | 20       |      | 0         | 0  | 0              |
| 56-524           | E-09         |      |      |      | N       |                     | 9865         | OH       | 88               | NA           | 15          | 10        |           | 0        | 0          | 0         | 0         | 0         |                 |          | 20       |      | 0         | 0  | 0              |
| 56-524           | E-09         |      |      |      | N       |                     | 9871         | B        | 78               | NA           | 15          | 0         | 10        | 0        | 0          | 0         | 0         | 0         |                 |          | 60       |      | 0         | 0  | 0              |
| 56-524           | E-09         |      |      |      | N       |                     | 9970         | Bw       | 63               | NA           | 1           | 0         | 80        | 0        | 0          | 0         | 0         | 0         | 0               |          | 10       |      | 0         | 0  | 0              |
| 56-524           | E-09         |      |      |      | N       |                     | 9973         | Bw       | 63               | NA           | 5           | 0         | 80        | 0        | 0          | 0         | 0         | 0         | 0               | 10       | 10       | 0    | 0         | 0  | 0              |
| 57-518           | C-01         |      |      |      | Ν       | Cross Lake          | 8280         | Pw       | 173              | NA           | 24          | 30        | 20        |          | 20         | 10        |           | 0         | 10              | 0        | 0        | 10   | 0         | 0  | 0              |
| 58-519           | C-03         |      |      |      | N       | Cross Lake          | 38           | Pw       | 173              | NA           | 0.5         | 30        | 10        | 10       | 20         | 10        | 20        | 0         | 0               | 0        | 0        | 0    | 0         | 0  | 0              |
| 57-519           | C-03         |      |      |      | Ν       |                     | 8823         | Pw       | 173              | NA           | 43          |           | 20        |          | 20         | 10        | 10        | 0         | 0               | 0        | 10       | 0    | 0         | 0  | 0              |
| 57-519           | C-03         |      |      |      | Ν       |                     | 8830         | Ce       | 143              | NA           | 40          |           | 20        |          |            | 0         | 0         | 0         | 0               | 10       | 10       | 0    | 0         | 0  | 0              |
| 57-519           | C-03         |      |      |      | Ν       |                     | 9136         | Ce       | 143              | NA           | 33          |           | 10        |          | 40         | 0         | 10        | 0         | 0               | 0        | 10       |      | 0         | 0  | 0              |
| 57-519           | C-03         |      |      |      | Ν       |                     | 9247         | Mr       | 63               | NA           | 29          |           | 20        |          |            | 0         | 0         | 0         | 0               | 0        | 20       |      | 0         | 0  | 0              |
| 57-519           | C-03         |      |      |      | Ν       |                     | 9342         | Pw       | 173              | NA           | 71          | 30        |           | 10       |            | 10        |           | 0         | 0               | 0        | 0        | 0    | 0         | 0  | 0              |
| 57-519           | C-02         |      |      |      | Ν       | Cross Lake          | 7503         | Pw       | 163              | NA           | 61          | 30        |           |          | 20         | 10        |           | 0         | 0               | 0        |          | 10   | 0         | 0  | 0              |
| 57-518           | C-02         |      |      |      | Ν       |                     | 7894         | Pw       | 163              | NA           | 34          | 30        |           |          | 20         | 10        |           | 0         | 0               | 0        |          | 10   | 0         | 0  | 0              |
| 57-518           | C-02         |      |      |      | N       |                     | 7996         | Bw       | 103              | NA           | 19          | 10        |           |          | 10         | 0         | 0         | 10        |                 |          | 0        | 20   | 0         | 0  | 0              |
| 58-519           | W-01         |      |      |      | N       | Wasaksina Lake      | 3577         | Ce       | 113              | NA           | 20          | 0         | 0         | 0        | 70         | 0         | 0         | 20        | 0               | 0        | 10       |      | 0         | 0  | 0              |
| 58-519           | W-01         | -    | _    |      | N       |                     | 3581         | Mh       | 123              | NA           | 19          | 10        |           | 0        | 20         | 0         | 0         | 10        |                 | 0        |          | 40   | 0         | 0  | 0              |
| 58-519           | W-01         |      |      |      | N       |                     | 3785         | Ce       | 113              | NA           | 27          | 20        |           | 0        | 50         | 0         | 0         | 10        | 0               |          | 10       |      | 0         | 0  | 0              |
| 58-519           | W-02         | -    | -    | -    | N       | Wasaksina Lake      | 4671         | Ce       | 113              | NA           | 25          | 10        |           | 0        | 60         | 0         | 0         | 10        | 0               | 0        | 20       |      | 0         | 0  | 0              |
| 59-519<br>59-519 | J-01         | -    |      | -    | N<br>N  | Jump Cariboo L.     | 3232<br>3528 | Ce<br>B  | 143<br>88        | NA<br>NA     | 27<br>19    | 10<br>20  |           | 20<br>10 | 30<br>20   | 0         | 0         | 0         | 20              | 0        | 0<br>20  | 0    | 0         | 0  | 0              |
| 60-520           |              | Y    | -    |      | IN<br>Y | Rabbit L.           | 4173         | Се       | 103              | NA           | 0.4         | 30        |           |          | 20<br>50   | 0         | 0         | 0         | 10<br>10        | 0        | 20       | 0    | 0         | 0  | 0              |
| 60-520           | R-01         | I    | -    | -    | N       | Rabbit L.           | 4173         | Ce       | 103              | NA           | 22          | 30        | -         |          | 50         | 0         | 0         | 0         | 10              | 0        | 0        | 0    | 0         | 0  | 0              |
| 61-521           | F-01         | -    | -    | -    | N       | Fourbass L.         | 956          | Bw       | 135              | NA           | 15          | 10        |           | 10       |            | 0         | 0         | 0         | 0               |          | 20       | -    | 0         | 0  | 0              |
| 61-521           | F-01         | -    | -    | -    | N       |                     | 961          | Bw       | 135              | NA           | 9           | 10        |           | 10       |            | 0         | 0         | 0         |                 |          | 20       |      | 0         | 0  | 0              |
| 61-521           | F-01         | -    |      |      | N       |                     | 1156         | Bw       | 135              | NA           | 68          |           | 30        |          |            | 0         | 0         | 0         |                 |          | 20       |      | 0         | 0  | 0              |
| 01021            |              |      |      |      |         |                     | 1100         |          | 100              |              | 00          | 10        | 100       | 10       | 20         | 0         |           | 0         | U               | 10       | 20       | U    |           | U  | 0              |
| Definitio        | ns CTG -     | - C  | otta | ae(  | s)      | present on island   |              |          |                  | Ab – B       | ack As      | sh        |           |          |            |           | Ms        | – S       | oft N           | /lapl    | e (re    | ed m | naple     | e) |                |
|                  |              |      |      | 0,   |         | and (approximate a  | rea of lak   | e in ha) |                  | B – Bal      |             |           |           |          |            |           |           |           | ck P            |          | - (      |      |           | ., |                |
|                  |              |      |      |      |         | island (approximate |              | ,        | ha)              | Bw – V       | /hite B     | lirch     |           |          |            |           |           |           | oplar           |          |          |      |           |    |                |
|                  | WKG          | P _  | FR   | I W  | /orl    | king Group (domina  | ant tree sp  | pecies)  |                  | By – Ye      | ellow B     | irch      |           |          |            |           |           |           | ed Pi           |          |          |      |           |    |                |
|                  | Priv –       | Priv | /ate | e La | and     | (FRI stand)         |              |          |                  | Ce – C       |             |           |           |          |            |           |           |           | /hite           |          |          |      |           |    |                |
|                  |              |      |      |      |         |                     |              |          |                  | Or – R       |             |           |           |          |            |           |           |           | ack             |          |          |      |           |    |                |
|                  |              |      |      |      |         |                     |              |          |                  | Mh – h       | ard ma      | aple      | (sug      | ar n     | naple      | )         | Sw        | – N       | /hite           | Sp       | ruce     | ;    |           |    |                |
|                  |              |      |      |      |         |                     |              |          |                  |              |             |           |           |          |            |           |           |           |                 |          |          |      |           |    |                |

# Appendix 16. Summary of Features for Forest Resource Inventory Stands on Large Islands (>20 ha) in the Temagami Management Unit (continued)

| Appen    | ndix 17.  | Coa             | rse Wood  | y Debi | ris for (    | <b>Juantit</b>      | ative Fie             | eld Plot          | S                 |              |                      |                      |               |                 |
|----------|-----------|-----------------|-----------|--------|--------------|---------------------|-----------------------|-------------------|-------------------|--------------|----------------------|----------------------|---------------|-----------------|
| Plot     | Informati | on              | Tree Core | Ages   | Basa         | I Area of           | <sup>-</sup> Snags (m | ²/ha)             |                   | Volume       | e of Logs            | (m <sup>3</sup> /ha) |               | Coarse          |
| Isle No. | FRI No.   | Plot            | Maximum   | Mean   | White        | Red                 | All                   | All               | White             | Red          | White                | All                  | All           | Woody<br>Debris |
| 234      | 2598      | <b>No.</b><br>1 | 191       | 155    | Pine<br>0.00 | <b>Pine</b><br>0.00 | Conifer               | <b>Snags</b> 0.71 | <b>Birch</b> 0.00 | Pine<br>0.00 | <b>Cedar</b><br>0.00 | <b>Conifer</b> 12.07 | Logs<br>62.49 | 63.20           |
| 234      | 2598      | 2               | 147       | 145    | 3.98         | 0.00                | 4.70                  | 5.18              | 0.00<br>17.96     | 0.00         | 0.00                 | 43.42                | 66.77         | 71.95           |
| 234      | 2790      | 1               | 236       | 199    | 0.00         | 0.00                | 3.25                  | 3.25              | 0.00              | 0.00         | 57.41                | 87.32                | 119.03        | 122.28          |
| 234      | 2790      | 2               | 181       | 188    | 0.00         | 0.00                | 0.28                  | 2.33              | 0.00              | 0.00         | 0.00                 | 27.89                | 52.19         | 54.52           |
| 234      | 2790      | 3               | 249       | 201    | 0.00         | 0.00                | 0.00                  | 1.43              | 5.50              | 0.00         | 0.00                 | 23.17                | 85.41         | 86.84           |
| 234      | 3306      | 1               | 259       | 195    | 0.00         | 0.00                | 0.00                  | 0.00              | 4.42              | 0.00         | 17.85                | 157.49               | 162.85        | 162.85          |
| 234      | 3306      | 2               | 109       | 97     | 0.00         | 0.00                | 4.91                  | 4.91              | 12.38             | 0.00         | 8.95                 | 31.64                | 56.12         | 61.03           |
| 234      | 3306      | 3               | 175       | 140    | 0.00         | 0.00                | 0.00                  | 0.00              | 0.00              | 0.00         | 0.00                 | 166.99               | 171.40        | 171.40          |
| 312      | 2168      | 1               | 161       | 154    | 0.00         | 0.00                | 3.92                  | 4.71              | 0.00              | 0.00         | 0.00                 | 23.61                | 23.61         | 28.31           |
| 312      | 2168      | 2               | 88        | 81     | 0.00         | 0.00                | 0.38                  | 0.38              | 14.51             | 0.00         | 0.00                 | 11.78                | 29.51         | 29.90           |
| 312      | 2168      | 3               | 153       | 136    | 0.87         | 0.00                | 1.15                  | 2.38              | 0.00              | 0.00         | 0.00                 | 2.61                 | 19.73         | 22.11           |
| 312      | 3268      | 1               | 159       | 137    | 0.00         | 0.00                | 0.00                  | 1.01              | 0.00              | 13.21        | 0.00                 | 15.90                | 36.54         | 37.55           |
| 312      | 3268      | 2               | 239       | 195    | 0.64         | 0.00                | 1.40                  | 3.08              | 0.00              | 0.00         | 0.00                 | 3.77                 | 33.77         | 36.86           |
| 312      | 3268      | 3               | 228       | 219    | 6.95         | 0.00                | 8.66                  | 9.37              | 5.00              | 0.00         | 0.00                 | 47.00                | 52.00         | 61.37           |
| 388      | 5279      | 1               | 240       | 235    | 18.10        | 0.00                | 18.60                 | 25.97             | 0.00              | 0.00         | 0.00                 | 15.90                | 98.00         | 123.97          |
| 388      | 5279      | 2               | 134       | 125    | 0.00         | 0.00                | 0.00                  | 4.66              | 0.00              | 0.00         | 0.00                 | 0.00                 | 46.79         | 51.46           |
| 388      | 5279      | 3               | 201       | 195    | 0.00         | 0.00                | 0.00                  | 1.77              | 0.00              | 0.00         | 14.00                | 16.07                | 21.04         | 22.81           |
| 388      | 5288      | 1               | 162       | 114    | 0.00         | 0.00                | 0.00                  | 3.22              | 5.65              | 0.00         | 0.00                 | 94.04                | 111.09        | 114.30          |
| 388      | 5288      | 2               | 194       | 177    | 7.09         | 0.00                | 7.09                  | 7.09              | 6.24              | 0.00         | 0.00                 | 23.64                | 34.48         | 41.57           |
| 388      | 5288      | 3               | 191       | 183    | 7.30         | 0.00                | 7.96                  | 9.81              | 11.49             | 0.00         | 0.00                 | 28.60                | 40.08         | 49.89           |
| 388      | 6179      | 1               | 180       | 173    | 2.07         | 0.00                | 2.07                  | 2.07              | 0.00              | 0.00         | 0.00                 | 13.93                | 17.91         | 19.99           |
| 388      | 6179      | 2               | 184       | 183    | 4.34         | 0.00                | 4.34                  | 7.92              | 0.00              | 0.00         | 0.00                 | 18.40                | 18.40         | 26.32           |
| 388      | 6179      | 3               | 196       | 189    | 2.84         | 0.00                | 4.26                  | 6.67              | 0.00              | 28.76        | 0.00                 | 240.36               | 242.63        | 249.30          |
| 537      | 5231      | 1               | 212       | 195    | 16.20        | 0.00                | 17.45                 | 17.45             | 0.00              | 7.22         | 0.00                 | 131.00               | 133.13        | 150.58          |
| 537      | 5231      | 2               | 211       | 211    | 5.35         | 9.01                | 14.93                 | 14.93             | 0.00              | 9.65         | 0.00                 | 33.07                | 33.07         | 48.00           |
| 537      | 5231      | 3               | 217       | 211    | 0.38         | 0.00                | 2.48                  | 2.48              | 0.00              | 18.90        | 0.00                 | 181.02               | 182.25        | 184.74          |
| 660      | 8379      | 1               | 154       | 153    | 0.00         | 0.00                | 0.53                  | 12.98             | 11.63             | 0.00         | 0.00                 | 7.77                 | 82.26         | 95.24           |
| 660      | 8379      | 2               | 213       | 201    | 0.00         | 4.75                | 6.38                  | 6.38              | 0.00              | 0.00         | 0.00                 | 3.92                 | 5.53          | 11.91           |
| 660      | 8379      | 3               | 207       | 196    | 0.00         | 3.19                | 6.76                  | 6.76              | 0.00              | 0.00         | 0.00                 | 32.67                | 32.67         | 39.43           |
| 992      | 8827      | 1               | 131       | 123    | 0.00         | 0.00                | 1.12                  | 2.44              | 0.00              | 0.00         | 0.00                 | 82.90                | 88.76         | 91.20           |
| 992      | 8827      | 2               | 110       | 108    | 3.98         | 0.00                | 3.98                  | 6.15              | 1.92              | 0.00         | 0.00                 | 236.36               | 271.35        | 277.50          |
| 992      | 8827      | 3               | 126       | 120    | 0.57         | 0.57                | 1.13                  | 1.13              | 0.00              | 67.59        | 0.00                 | 70.58                | 91.79         | 92.92           |
| 1063     | 2355      | 1               | 332       | 272    | 0.00         | 0.00                | 0.33                  | 0.33              | 0.00              | 20.11        | 2.68                 | 98.24                | 107.96        | 108.29          |
| 1063     | 2355      | 2               | 308       | 266    | 3.21         | 21.83               | 25.99                 | 25.99             | 0.00              | 173.18       | 25.04                | 368.36               | 406.08        | 432.07          |
| 1063     | 2355      | 3               | 394       | 279    | 17.72        | 0.00                | 19.69                 | 19.69             | 0.00              | 106.33       | 54.39                | 363.30               | 410.21        | 429.90          |
| 1173     | 8459      | 1               | 234       | 219    | 0.00         | 0.00                | 1.54                  | 2.43              | 0.00              | 0.00         | 0.00                 | 164.92               | 164.92        | 167.35          |
| 1173     | 8459      | 2               | 261       | 241    | 0.00         | 0.00                | 0.00                  | 0.00              | 9.86              | 0.00         | 0.00                 | 82.37                | 99.33         | 99.33           |
| 1197     | 6814      | 1               | 269       | 259    | 0.00         | 0.00                | 0.24                  | 2.46              | 1.78              | 0.00         | 0.00                 | 40.03                | 41.80         | 44.26           |
| 1197     | 6814      | 2               | 267       | 240    | 0.00         | 0.00                | 0.00                  | 0.00              | 4.91              | 0.00         | 0.00                 | 23.58                | 28.49         | 28.49           |
| 1197     | 6814      | 3               | 235       | 205    | 5.11         | 0.00                | 5.55                  | 9.12              | 21.89             | 0.00         | 0.00                 | 40.06                | 64.51         | 73.62           |
| 1199     | 5829      | 1               | 272       | 259    | 2.27         | 4.91                | 7.18                  | 9.96              | 2.08              | 58.92        | 0.00                 | 174.56               | 203.92        | 213.89          |
| 1199     | 5829      | 2               | 138       | 131    | 0.00         | 0.00                | 1.65                  | 2.36              | 12.73             | 0.00         | 0.00                 | 10.46                | 28.07         | 30.43           |
| 1199     | 6117      | 1               | 236       | 179    | 0.50         | 0.00                | 0.89                  | 0.89              | 0.00              | 0.00         | 0.00                 | 17.26                | 17.26         | 18.15           |
| 1199     | 6117      | 2               | 231       | 224    | 12.57        | 0.00                | 17.33                 | 17.57             | 6.72              | 0.00         | 53.60                | 239.12               | 247.35        | 264.92          |
| 1199     | 6117      | 3               | 140       | 140    | 0.00         | 0.00                | 0.00                  | 0.00              | 2.83              | 0.00         | 0.00                 | 27.04                | 29.87         | 29.87           |
| 1205     | 4715      | 1               | 170       | 170    | 0.00         | 0.00                | 0.00                  | 8.72              | 7.59              | 0.00         | 0.72                 | 134.46               | 150.35        | 159.07          |
| 1205     | 4715      | 2               | 229       | 176    | 0.60         | 0.00                | 1.83                  | 3.72              | 0.00              | 0.00         | 0.00                 | 11.22                | 14.42         | 18.14           |
| 1205     | 4715      | 3               | 222       | 217    | 1.77         | 0.00                | 6.10                  | 10.84             | 1.33              | 0.00         | 2.59                 | 11.30                | 15.37         | 26.21           |
| 1205     | 5233      | 1               | 124       | 119    | 0.00         | 0.00                | 0.00                  | 5.59              | 17.37             | 0.00         | 0.00                 | 2.76                 | 70.03         | 75.62           |
| 1205     | 5233      | 2               | 115       | 107    | 0.57         | 0.00                | 0.57                  | 1.42              | 15.80             | 0.00         | 0.00                 | 8.85                 | 53.29         | 54.71           |
|          |           |                 |           |        |              |                     | 16                    |                   |                   |              |                      |                      |               |                 |

Appendix 17. Coarse Woody Debris for Quantitative Field Plots

|                       |      |      |      |            |      |      |      |      |      |      |      | Islan | d Nu | imbe | er/FF | RI Sta | and  | Num  | ber  |      |      |      |      |      |      |      |        |      |      |      |
|-----------------------|------|------|------|------------|------|------|------|------|------|------|------|-------|------|------|-------|--------|------|------|------|------|------|------|------|------|------|------|--------|------|------|------|
| Species               | 660  | 234  | 234  | 234        | 537  | 1063 | 1063 | 1063 | 849  | 312  | 312  | 312   | 312  | 312  | 388   | 388    | 388  | 25   | 1088 | 1088 | 1091 | 1173 | 1205 | 1205 | 1205 | 1199 | 1199 1 | 197  | 1197 | 992  |
| openeo                | 8379 | 3306 | 2790 | 2598       | 5421 | 2149 | 2355 | 2655 | 9203 | 2168 | 2362 | 2556  | 3268 | 3366 | 5279  | 5288   | 6179 | 9714 | 8653 | 7759 | 7565 | 8459 | 5233 | 4715 | 5118 | 6117 | 5829 6 | 6814 | 6910 | 8827 |
| American Mountain     |      |      |      |            |      |      |      |      |      |      |      |       |      |      |       |        |      |      |      |      |      |      |      |      |      |      |        |      |      |      |
| Ash                   |      |      |      | Х          | X    | Х    | Х    | Х    | Х    | Х    | Х    | Х     | Х    |      | Х     | X      |      | Х    | Х    | Х    | Х    |      |      | Х    |      | Х    | X      | Х    |      | Х    |
| Balsam Fir            | X    | Х    | Х    | Х          | X    | Х    | X    | Х    | Х    | Х    | Х    | Х     | X    |      | Х     | Х      | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | X      | Х    | Х    | Х    |
| Balsam Poplar         |      | Х    |      |            |      |      |      |      |      |      |      |       |      |      |       |        |      | Х    |      |      |      |      |      |      |      |      |        |      |      |      |
| Baneberry (Red)       |      |      |      |            |      |      |      |      |      | Х    |      |       |      |      |       |        |      | Х    |      | Х    |      |      |      |      |      |      |        |      |      |      |
| Bear Berry            | Х    |      |      |            |      |      |      |      |      |      |      |       |      |      |       |        |      |      | Х    |      | Х    |      |      |      |      |      |        |      |      | Х    |
| Black Ash             | Х    |      | Х    |            |      |      |      |      |      |      |      |       | Х    |      |       |        |      | Х    |      |      |      |      | Х    |      |      |      |        |      |      |      |
| Black Chokeberry      | Х    |      |      | Х          |      |      |      |      | Х    |      |      |       | Х    |      |       |        | Х    |      |      |      |      |      |      | Х    | Х    |      |        |      |      | Х    |
| Black Spruce          | X    | Х    | Х    | Х          | X    | Х    | Х    | Х    | Х    | Х    | Х    | Х     | Х    |      | Х     | Х      | Х    |      | Х    | Х    | Х    | Х    | Х    | Х    |      | Х    | X      | Х    | X    | Х    |
| Blue Flag Iris        |      |      |      | Х          |      |      | Х    | Х    |      |      |      |       | Х    | Х    |       |        |      | Х    | Х    |      |      | Х    |      |      |      |      |        |      |      |      |
| Blue-bead Lily        | Х    | Х    | Х    | Х          | X    | Х    | Х    | Х    | Х    | Х    | Х    | Х     | Х    |      | Х     | Х      | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      | Х    | Х      | Х    | Х    | Х    |
| Bog Cranberry         |      |      |      |            |      |      |      |      | Х    |      |      |       |      |      |       |        |      |      |      |      |      |      |      |      |      |      |        |      |      |      |
| Bog Laurel            |      |      |      |            |      |      |      |      | Х    |      |      |       |      |      |       |        |      |      |      |      |      |      |      |      |      |      |        |      |      |      |
| Bog Rosemary          |      |      |      |            |      |      |      |      | Х    |      |      |       |      |      |       |        |      |      |      |      |      |      |      |      |      |      |        |      |      |      |
| Bracken Fern          | Х    |      |      | Х          | Х    |      |      | Х    | Х    | Х    | Х    | Х     | X    | Х    | Х     | Х      | Х    | Х    | Х    | Х    |      | Х    | Х    | Х    | Х    | Х    | Х      | Х    | Х    | Х    |
| Bristley Sarsaparilla |      |      |      |            | X    |      |      |      |      |      |      |       |      |      |       |        |      |      |      |      |      | X    |      | Х    | Х    | X    |        |      |      |      |
| Bunchberry            | Х    |      | Х    | Х          | X    | Х    | X    | Х    | Х    | Х    | Х    | Х     | X    |      | Х     | Х      | Х    | Х    | Х    | Х    | Х    | X    | Х    | Х    |      | X    | Х      | Х    | Х    | Х    |
| Canada Fly            |      |      |      |            |      |      |      |      |      |      |      |       |      |      |       |        |      |      |      |      |      |      |      |      |      |      |        |      |      |      |
| Honeysuckle           | X    | X    | X    | X          | X    | X    | X    | Х    | X    | X    | Х    | Х     | X    |      | Х     | X      | X    | X    |      | Х    | Х    | X    | X    | Х    |      | Х    | X      | X    |      | Х    |
| Canada Mayflower      | Х    | Х    | Х    | Х          | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х     | Х    |      | Х     | Х      | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      | Х    | Х      | Х    |      | Х    |
| Canada Yew            |      | Х    | Х    | Х          | Х    | Х    | Х    |      | Х    | Х    |      |       |      |      | Х     |        | Х    | Х    |      | Х    | Х    | Х    |      |      |      |      |        | Х    |      | Х    |
| Choke Cherry          |      | Х    |      |            |      |      |      |      |      |      |      |       |      |      |       | Х      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |
| Cinnamon Fern         |      |      |      |            |      |      |      |      | Х    |      | Х    |       | Х    |      |       |        |      |      |      |      |      |      |      |      | Х    |      | Х      |      |      |      |
| Cow Wheat             | X    |      |      |            |      |      |      |      |      |      |      |       |      | Х    |       |        |      |      |      |      |      |      |      | Х    | Х    | Х    |        |      | X    |      |
| Creeping Snowberry    | X    |      |      | Х          | X    | Х    | Х    | Х    |      |      | Х    | Х     | Х    | Х    |       | Х      | Х    | Х    | Х    | Х    | Х    |      | Х    | Х    | Х    | Х    | X      | Х    | X    | Х    |
| Daisy                 |      |      |      | Х          |      |      |      |      |      |      |      |       |      |      |       |        |      | Х    |      |      |      |      |      |      |      |      |        |      |      |      |
| Dandelion             |      | Х    |      |            |      |      |      | Х    |      |      |      |       |      |      |       |        |      | Х    |      |      |      |      |      |      |      |      |        |      |      |      |
| Downy Serviceberry    |      |      |      |            | X    |      |      | Х    | Х    |      |      |       | Х    | Х    |       |        |      |      |      | Х    |      |      | Х    | Х    | Х    | Х    |        |      |      | Х    |
| Dwarf Enchanter's     |      |      |      |            |      |      |      |      |      |      |      |       |      |      |       |        |      |      |      |      |      |      |      |      |      |      |        |      |      |      |
| Nightshade            |      | Х    |      |            |      |      |      |      | X    |      |      |       |      |      |       |        | X    |      |      |      |      |      |      |      |      |      |        |      |      |      |
| Dwarf Scouring Rush   |      |      | Х    |            |      |      |      |      |      |      | Х    |       |      |      |       |        |      |      |      |      |      |      |      |      |      |      |        |      |      |      |
| Dwarf Trailing        |      |      |      |            |      |      |      |      |      |      |      |       |      |      |       |        |      |      |      |      |      |      |      |      |      |      |        |      |      |      |
| Raspberry             | Х    |      | Х    | Х          |      |      | X    |      |      |      |      |       |      |      |       |        |      | X    | Х    |      |      |      | Х    |      |      |      |        | Х    |      |      |
| False Climbing        |      |      |      | <u>,</u> , |      |      |      |      |      |      |      |       |      |      |       | \      |      |      |      |      |      |      |      |      | \    |      |        |      |      |      |
| Buckwheat             |      |      |      | X          |      |      |      |      |      |      | Х    | 17    |      |      | Х     | X      |      | X    |      |      |      | X    |      | Х    | Х    | X    |        |      |      |      |

#### Appendix 18. Plant Species Inventory (continued)

|                                |      |      |      |      |      |      |      |      |      |      |      | Islan | d Nu | ımbe | r/FR | l Sta | and  | Num  | ber  |      |      |      |      |      |      |      |      |      |      |      |
|--------------------------------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------|------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|                                | 660  | 234  | 234  | 234  | 537  | 1063 | 1063 | 1063 | 849  | 312  | 312  | 312   | 312  | 312  | 388  | 388   | 388  | 25   | 1088 | 1088 | 1091 | 1173 | 1205 | 1205 | 1205 | 1199 | 1199 | 1197 | 1197 | 992  |
|                                | 8379 | 3306 | 2790 | 2598 | 5421 | 2149 | 2355 | 2655 | 9203 | 2168 | 2362 | 2556  | 3268 | 3366 | 5279 | 5288  | 6179 | 9714 | 8653 | 7759 | 7565 | 8459 | 5233 | 4715 | 5118 | 6117 | 5829 | 6814 | 6910 | 8827 |
| Species                        |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |       |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| False Solomon Seal             |      | Х    | Х    |      |      |      |      |      |      | Х    |      |       |      |      | Х    | Х     |      |      | Х    | Х    | Х    |      | Х    |      | Х    |      |      |      |      |      |
| Fancy Wood Fern                | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      | Х    | Х    | Х    | Х     | Х    | Х    | Х    | Х     | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      | Х    |
| Fire Weed                      |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |       |      | Х    |      |      |      |      |      |      |      |      |      |      |      |      |
| Fragrant Bedstraw              |      |      | X    |      |      |      |      |      | X    | Х    |      |       |      |      | Х    | Х     |      | Х    |      | Х    |      |      | Х    |      |      |      |      |      |      |      |
| Geranium                       |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |       |      | Х    |      |      |      |      |      |      |      |      |      |      |      |      |
| Goldthread                     | X    |      | Х    | X    | X    | Х    | X    | Х    | X    |      | Х    | Х     | Х    | Х    | Х    | Х     | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |
| Goldenrod                      |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |       |      | Х    |      |      |      |      |      |      |      |      |      |      |      |      |
| Grass spp.                     |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |       |      |      |      | Х    |      |      |      |      |      |      |      |      |      |      |
| Green Alder                    | Х    |      |      |      | Х    | Х    | Х    | Х    | Х    |      |      | Х     | Х    |      |      | Х     | Х    |      | Х    |      | Х    |      |      | Х    | Х    | Х    | Х    | Х    |      | Х    |
| Green-Flowered Pyrola          |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |       |      |      |      |      |      |      |      |      |      | Х    |      |      |      |      |
| Ground Cedar                   |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |       | Х    |      | Х    |      |      |      |      |      |      |      |      |      |      |      |
| Ground Pine                    | Х    | Х    | Х    |      | Х    | Х    |      |      | Х    | Х    | Х    | Х     |      | Х    | Х    | Х     | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      | Х    | Х    | Х    |
| Hairy Honeysuckle              |      |      |      | Х    |      |      |      |      |      |      |      |       |      |      |      |       |      | Х    |      |      |      |      |      |      |      |      |      |      |      |      |
| Hawkweed (yellow)              |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |       |      | Х    |      |      |      |      |      |      |      |      |      |      |      |      |
| Hazlenut                       | Х    | X    | X    | X    |      |      | X    |      | X    | Х    | Х    | Х     | X    |      | Х    | Х     | Х    | Х    | Х    | Х    | Х    | X    | X    | Х    |      | Х    | Х    | Х    | Х    | Х    |
| Heal All                       |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |       |      | Х    |      |      |      |      |      |      |      |      |      |      |      |      |
| Indian Pipe                    |      |      |      |      |      |      |      |      | X    |      |      |       |      |      |      |       | Х    |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Interrupted Fern               | Х    |      | Х    |      |      | X    | X    |      | X    | Х    | Х    |       |      |      |      |       |      | Х    | Х    |      |      |      | X    |      |      |      | Х    | Х    |      |      |
| Jack Pine                      | Х    |      |      |      |      |      |      |      |      |      | Х    |       | Х    |      |      |       |      |      |      |      | Х    |      |      | Х    |      | Х    | Х    |      |      |      |
| Jewel Weed                     |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |       |      | Х    |      |      |      |      |      |      |      |      |      |      |      |      |
| Juniper                        | Х    |      |      |      |      |      |      |      |      |      |      | Х     | Х    | Х    |      |       |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Kidney-Leaved Violet           | Х    |      | Х    |      |      | Х    | Х    |      | Х    | Х    |      |       |      |      | Х    | Х     | Х    |      | Х    |      |      |      |      | Х    |      |      |      |      |      |      |
| Labrador Tea                   |      |      |      |      |      |      |      |      | Х    |      | Х    |       | Х    |      |      | Х     | Х    |      |      |      |      |      | Х    |      | Х    |      | Х    |      | Х    |      |
| Lady Fern                      | Х    |      | Х    |      |      |      | Х    |      | Х    | Х    |      |       |      |      |      |       |      | Х    |      |      |      |      | Х    |      |      |      |      |      |      |      |
| Lady Slipper                   | X    |      | X    |      | X    | Х    | X    | Х    | X    |      | Х    | Х     | X    | Х    |      | Х     | Х    |      |      |      | Х    | Х    |      | Х    | Х    | Х    |      |      | Х    | Х    |
| Large Pointed-Leaved<br>Violet | x    |      |      |      |      |      |      |      |      |      |      |       |      |      |      |       |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Large-leaved Aster             |      |      | Х    |      |      |      |      |      |      |      | Х    | Х     |      |      | Х    | Х     |      | Х    | Х    | Х    | Х    |      | Х    | Х    |      |      |      |      |      |      |
| Large-tooth Aspen              | Х    |      | X    | Х    |      |      |      |      | Х    |      | X    | X     | X    |      | X    | X     | Х    |      | X    | X    |      |      | - •  | X    |      | Х    | Х    |      |      | Х    |
| Late-Low Blueberry             |      |      | X    | X    | Х    | Х    | Х    | Х    | X    | Х    | X    | X     | X    |      | X    | X     | X    | Х    | X    | X    | Х    | Х    |      | X    |      | X    | X    | Х    | Х    | X    |
| Lycopodium lucidulum           | X    | X    | X    |      | X    | X    | X    | X    | X    | X    | X    | ~     |      | Х    | X    | X     | X    | X    | X    | X    | X    | X    |      | X    |      | X    |      | X    | ~    | X    |
| Marginal Wood Fern             |      | X    |      |      |      |      |      |      |      | ~    | X    |       |      | X    | X    | ~     |      |      | X    | X    |      |      |      | X    | Х    |      |      |      |      | X    |
| Mountain Holly                 | Х    |      | Х    | X    | Х    | Х    |      |      | Х    |      | X    |       | Х    | X    | X    | Х     | Х    |      | X    | X    |      | Х    | Х    | ~    | Λ    | Х    | Х    | Х    |      | X    |
| Mountain Maple                 | X    | X    | X    | X    | X    | X    | X    | X    | X    | Х    | X    | Х     | X    | ^    | X    | X     | X    | X    | X    | X    | х    | X    | X    | Х    | Х    | X    | X    | X    |      | X    |

#### Appendix 18. Plant Species Inventory (continued)

|                           |      |      |      |      |      |      |      |      |      |      | l    | slan | d Nu | umbe | er/FR | l Sta | and  | Num  | ber  |      |      |      |      |      |      |      |      |      |      |          |
|---------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|----------|
|                           | 660  | 234  | 234  | 234  | 537  | 1063 | 1063 | 1063 | 849  | 312  | 312  | 312  | 312  | 312  | 388   | 388   | 388  | 25   | 1088 | 1088 | 1091 | 1173 | 1205 | 1205 | 1205 | 1199 | 1199 | 1197 | 1197 | 992      |
| Species                   | 8379 | 3306 | 2790 | 2598 | 5421 | 2149 | 2355 | 2655 | 9203 | 2168 | 2362 | 2556 | 3268 | 3366 | 5279  | 5288  | 6179 | 9714 | 8653 | 7759 | 7565 | 8459 | 5233 | 4715 | 5118 | 6117 | 5829 | 6814 | 6910 | 8827     |
| Northern Beech Fern       | Х    |      |      | Х    |      | Х    | Х    |      | Х    | Х    |      |      |      |      |       |       |      | Х    |      |      |      |      |      |      |      |      |      |      |      | <u> </u> |
| Northern Bush             | ~    |      |      |      |      | ~    |      |      |      |      |      |      |      |      |       |       |      | ~    |      |      |      |      |      |      |      |      |      |      |      | <u> </u> |
| Honeysuckle               | x    |      | x    | X    | x    |      |      | x    | х    | x    | х    | x    |      |      | x     | x     |      | X    | Х    | х    | Х    | x    | x    | Х    |      | x    | x    | x    |      | X        |
| Oak Fern                  | X    | Х    | X    |      | X    | X    | Х    |      | Х    | X    | X    |      |      |      | X     |       | Х    | X    | X    | X    | Х    |      | X    | Х    |      |      |      |      |      |          |
| One-Sided Pyrola          |      | Х    | Х    | Х    | Х    | Х    |      | Х    | Х    |      | Х    | X    |      | Х    |       |       | Х    | Х    | Х    |      |      | Х    |      |      |      |      | Х    | Х    |      |          |
| Pin Cherry                | Х    |      |      |      |      | X    |      |      | Х    | Х    | Х    |      |      | X    | Х     | Х     |      |      | Х    |      |      | Х    |      | Х    | Х    | Х    |      | Х    |      |          |
| Princes Pine              |      |      |      |      |      |      |      | Х    | Х    |      |      |      |      | Х    |       |       |      |      | Х    | Х    | Х    | Х    |      |      |      | Х    |      |      |      | Х        |
| Rattlesnake Plantain      |      |      |      |      | X    | Х    | Х    |      |      |      | Х    |      | Х    |      |       |       |      |      | Х    |      |      |      |      |      |      | Х    | Х    |      | Х    |          |
| Red Maple                 | Х    |      | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      | Х     | Х     | Х    | Х    | Х    | Х    | Х    | Х    | X    | Х    | Х    | Х    | Х    | Х    | Х    | Х        |
| Red Oak                   | Х    |      | Х    | Х    |      |      |      |      | Х    | Х    | Х    | Х    | Х    | Х    |       |       |      |      | Х    | Х    | Х    | Х    |      | Х    | Х    |      |      |      |      | Х        |
| Red Pine                  | Х    |      |      | Х    | X    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      |       | Х     | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      | Х    | Х    | Х    | Х    | Х        |
| Red Raspberry             |      |      |      | Х    |      | Х    |      |      |      | Х    | Х    |      |      |      | Х     | Х     |      | Х    |      |      |      |      |      | Х    | Х    | Х    |      |      |      |          |
| Rock Cap Fern             | Х    |      | Х    |      | X    | X    |      | Х    | Х    |      | Х    | Х    | Х    | X    | Х     | Х     | Х    |      | Х    | Х    |      | Х    |      | Х    | Х    | Х    |      | Х    | Х    | Х        |
| Round-Leaved              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |       |      |      |      |      |      |      |      |      |      |      |      |      |      |          |
| Dogwood                   | Х    |      |      |      |      |      |      |      |      |      |      |      |      |      |       |       |      |      | Х    | Х    |      |      |      |      | Х    |      |      |      |      |          |
| Sensitive Fern            |      |      | Х    |      |      |      |      |      |      |      |      |      |      |      |       |       |      | Х    |      |      |      |      |      |      |      |      |      |      |      |          |
| Sheep Laurel              |      |      | Х    |      |      | Х    |      |      | Х    |      |      | Х    | Х    | Х    |       |       | Х    |      | Х    |      | Х    |      | Х    | Х    | Х    | Х    | Х    | Х    |      |          |
| Shining Club Moss         | X    |      |      | X    |      | X    | X    |      | Х    |      | Х    |      | Х    | X    | Х     |       | Х    | Х    |      |      | Х    |      | Х    | Х    |      |      | Х    | Х    |      | Х        |
| Showy Mountain Ash        |      | Х    | X    | Х    | X    | X    | X    |      | Х    | Х    | Х    |      | Х    |      | Х     | Х     | Х    |      | Х    | Х    |      | Х    |      |      |      |      | Х    |      | Х    | X        |
| Skunk Current             | X    |      | Х    | Х    |      | X    | Х    |      |      | Х    | Х    |      |      | X    | Х     | Х     |      | X    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      |      |      | Х        |
| Smooth Serviceberry       | X    |      | Х    | Х    | X    | X    |      | Х    | Х    |      | Х    | X    | Х    | X    | Х     | Х     | Х    |      | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      | Х        |
| Speckled Alder            | X    | Х    | X    | Х    |      | X    | Х    | Х    | Х    | Х    | Х    | X    | Х    |      |       | Х     | Х    | X    | Х    | Х    |      |      | Х    |      | Х    | Х    | Х    | Х    |      |          |
| Spreading Dogbane         | X    |      |      |      |      |      |      |      |      |      |      |      |      |      |       |       |      |      |      |      |      |      |      |      | Х    | Х    |      |      |      |          |
| Star Flower               |      | Х    | Х    | Х    | X    | Х    | Х    | Х    | Х    | Х    | Х    | X    | Х    |      | Х     | Х     | Х    | Х    | Х    | Х    | Х    | Х    |      | Х    |      | Х    | Х    | Х    | Х    | X        |
| Striped Maple             | X    | Х    | Х    | Х    | X    | Х    | Х    |      | Х    |      | Х    | X    | Х    | Х    | Х     | Х     | Х    |      | Х    | Х    | Х    | Х    |      |      | Х    |      |      | Х    |      | Х        |
| Sugar Maple               |      | Х    | Х    |      |      |      |      |      |      |      |      |      |      |      | Х     |       |      |      |      | Х    | Х    |      |      |      |      |      |      |      |      | Х        |
| Sweet Fern                | Х    |      |      |      |      |      |      |      |      |      |      |      |      |      |       |       |      |      |      |      |      |      |      | Х    | Х    | Х    |      |      |      |          |
| Three-Leaved Solomon Seal |      |      |      |      |      |      |      |      |      |      | х    |      | х    |      |       |       |      |      |      |      |      |      |      |      |      |      |      |      |      |          |
| Toothed Wood Fern         | Х    |      | Х    | Х    |      | Х    | Х    |      | Х    | Х    |      | Х    |      |      | Х     | Х     | Х    | Х    |      |      | Х    | Х    | Х    | Х    |      |      |      | Х    |      | Х        |
| Trailing Arbutus          | Х    |      |      | Х    |      | Х    | Х    | Х    | Х    |      | Х    | Х    | Х    | Х    |       |       | Х    |      | Х    |      | Х    |      | Х    | Х    | Х    | Х    | Х    | Х    | Х    |          |
| Trembling Aspen           | Х    |      | Х    | Х    |      |      |      |      | Х    | Х    | Х    |      |      |      | Х     |       |      |      | Х    | Х    | Х    |      |      | Х    |      | Х    |      |      |      | Х        |
| Twinflower                | Х    |      |      | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      | Х     | Х     | Х    | Х    |      | Х    | Х    | Х    | Х    | Х    |      | Х    | Х    | Х    | Х    | Х        |

|                       |      |      |      |      |      |      |      |      |      |      | 1    | slan | d Nu | mbe  | r/FF | RI Sta | and  | Num  | ber  |      |      |      |      |      |      |      |      |      |      |      |
|-----------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|                       | 660  | 234  | 234  | 234  | 537  | 1063 | 1063 | 1063 | 849  | 312  | 312  | 312  | 1    | 312  | 388  |        | 388  |      |      | 1088 | 1091 | 1173 | 1205 | 1205 | 1205 | 1199 | 1199 | 1197 | 1197 | 992  |
|                       | 8379 | 3306 | 2790 | 2598 | 5421 | 2149 | 2355 | 2655 | 9203 | 2168 | 2362 | 2556 | 3268 | 3366 | 5279 | 5288   | 6179 | 9714 | 8653 | 7759 | 7565 | 8459 | 5233 | 4715 | 5118 | 6117 | 5829 | 6814 | 6910 | 8827 |
| Species               |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |        |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Twisted Stalk         | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      | Х    | Х    | Х      | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      |
| Velvet-Leaf Blueberry |      |      |      | Х    | Х    |      |      | Х    | Х    |      | Х    |      | Х    |      | Х    | Х      | Х    |      |      |      |      | Х    |      | Х    |      | Х    | Х    | Х    | Х    | Х    |
| White Birch           | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      | Х    | Х      | Х    | Х    | Х    | Х    | Х    | Х    |      | Х    |      | Х    | Х    | Х    | Х    | X    |
| White Cedar           |      | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      | Х    | Х      | Х    | Х    | Х    | Х    | Х    |      |      | Х    |      | Х    | Х    |      | Х    | Х    |
| White Pine            | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      | Х    | Х      | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      | Х    | Х    | Х    | Х    | Х    |
| White Spruce          | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      | Х    | Х    | Х    |      | Х    | Х      | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      | Х    | Х    | Х    |      | Х    |
| Wild Raisin           |      |      |      |      | Х    |      |      |      | Х    |      | Х    |      | Х    |      | Х    | Х      | Х    |      | Х    |      |      |      |      |      |      |      | Х    |      |      | Х    |
| Wild Sarsaparilla     | Х    | Х    |      | Х    | X    | Х    | Х    | Х    | Х    | Х    | Х    | X    | X    |      | Х    | Х      | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      | Х    | Х    | Х    | Х    | X    |
| Wintergreen           | Х    |      |      |      | X    | Х    | Х    | Х    | Х    |      | Х    | X    | X    |      |      | Х      | Х    |      | Х    | Х    | Х    | Х    |      | Х    |      | Х    | Х    | Х    | Х    |      |
| Wolf's Claw Clubmoss  | Х    |      | Х    |      | Х    |      |      |      | Х    | Х    | Х    | Х    |      | Х    | Х    | Х      | Х    | Х    |      |      | Х    | Х    |      |      | Х    |      |      | Х    |      | X    |
| Yellow Birch          | X    | Х    | Х    |      | Х    | Х    | Х    | Х    | Х    | Х    | Х    |      | Х    |      | Х    | Х      | Х    |      | Х    | Х    |      | Х    | Х    | Х    |      |      |      | Х    |      | X    |

| Appendix 19. Common and S     | Scientific Plant Names               |
|-------------------------------|--------------------------------------|
| Common Name                   | Scientific Name                      |
| 3-leaved Solomon seal         | Maianthemum trifolium                |
| alternate-leaved dogwood      | Cornus alterniflora                  |
| American mountain ash         | Sorbus americana                     |
| ash                           | Fraxinus spp.                        |
| balsam fir                    | Abies balsamea                       |
| baneberry, red                | Actaea rubra                         |
| beaked hazelnut               | Corylus cornuta                      |
| beech fern                    | Phegopteris connectilis              |
| birch                         | Betula spp.                          |
| black ash                     | Fraxinus nigra                       |
| black spruce                  | Picea mariana                        |
| blue bead lily                | Clintonia borealis                   |
| blunt leaf orchid             | Platanthera obtusata                 |
| bracken fern                  | Pteridium aquilinum                  |
| bugleweed                     | Lycopus uniflorus                    |
| bunchberry                    | Cornus canadensis                    |
| Canada fly honeysuckle        | Lonicera canadensis                  |
| Canada mayflower              | Maianthemum canadense                |
| Canada yew/ground hemlock     | Taxus canadensis                     |
| cedar, white                  | Thuja occidentalis                   |
| cinnamon fern                 | Osmunda cinnamomea                   |
| common polypody (rock fern)   | Polypodium virginianum               |
| cow wheat                     | Melampyrum lineare                   |
| creeping snowberry            | Gaultheria hispidula                 |
| dew drop                      | Dalibarda repens                     |
| dogwood                       | Cornus spp.                          |
| dwarf enchanter's night shade | Circeaea alpina                      |
| dwarf trailing raspberry      | Rubus pubescens                      |
| black fringed bindweed        | Polygonum cilinode                   |
| false Solomon seal            | Maianthemum racemosum                |
| fancy wood fern               | Dryopteris Fancy                     |
| fragrant bedstraw             | Galium asprellum                     |
| fringed bindweed              | Polygonum cilinode                   |
| goldthread                    | Coptis trifolia                      |
| -                             | Botrychium virginianum               |
| grape fern (rattlesnake)      | Boliychium virginanum                |
| grass                         | Diphoniostrum digitatum              |
| ground cedar                  | Diphasiastrum digitatum              |
| ground pine<br>horsetail      | Lycopodium obscurum                  |
| Indian cucumber root          | Equisetum spp.<br>Medeele virginiene |
|                               | Medeola virginiana                   |
| Indian pipe                   | Monotropa uniflora                   |
| interrupted club-moss         | Lycopodium annotinum                 |
| interrupted fern              | Osmunda claytoniana                  |
| ironwood                      | Ostrya virginiana                    |
| jack pine                     | Pinus banksiana                      |
|                               |                                      |

### Appendix 19. Common and Scientific Plant Names

#### Appendix 19. Common and Scientific Plant Names (con't.)

**Common Name** jewelweed Labrador tea lady fern large-leaved aster large-toothed aspen (poplar) late-low blueberry lichens maple maple leaved viburnum marginal wood fern mint mosses & liverworts mountain alder mountain holly mountain maple aster naked mitrewort needle litter northern bush honeysuckle oak fern one flowered wintergreen one sided pyrola pale corydalis partridgeberry pin cherry pine pink lady slipper poplar (aspen) poplar balsam prince's pine pyrola raspberry rattlesnake plantain red currant red maple red oak red pine round-leaved dogwood sedges sensitive fern serviceberry sheep's laurel shining club-moss showy mountain ash skunk currant Solomon seal speckled alder spikenard

**Scientific Name** Impatiens capensis Ledum groenlandicum Athyrium angustum Aster macrophyllus Populus grandidentata Vaccinium angustifolium Acer spp. Viburnum acerifolium Dryopteris marginalis Mentha arvensis Alnus Crispa Nemopanthus mucronatus Acer spicatum Aster spp. Mitella nuda Diervilla lonicera Gymnocarpium dryopteris Moneses uniflora Orthilia secunda Corydalis sempervirens Mitchella repens Prunus pensylvanica Pinus spp. Cypripedium acaule Populus spp. Populus balsamifera Chimaphila umbellata Pyrola spp. Rubus spp. Goodyera repens Ribes triste Acer rubrum Quercus rubra Pinus resinosa Cornus rugosa Carex spp. Onoclea sensibilis Amelanchier spp, Kalmia angustifolia Huperzia lucidula Sorbus decora Ribes glandulosum Polygonatum pubescens Alnus rugosa Aralia racemosa

#### Appendix 19. Common and Scientific Plant Names (con't.)

Common Name

#### Scientific Name

spotted Joe-pye weed spreading dogbane spruce star flower stripped maple sugar maple swamp black currant sweet fern toothed wood fern trailing arbutus trembling aspen (poplar) trillium twinflower twisted stalk velvet leaf blueberry violet water horehound white birch white pine white spruce wild prickley rose wild raisin wild sarsaparilla willow wintergreen wolf's claw club-moss wood fern wood sorrel yellow birch

Eupatorium maculatum Apocynum androsaemifolium Picea spp. Trientalis borealis Acer pensylvanicum Acer saccharum Ribes lacustre Comptonia peregrina Dryopteris Carthusiana Epigaea repens Populus tremuloides Trillium spp. Linnaea borealis Streptopus roseus Vaccinium myrtilloides Viola spp. Lycopus americanus Betula papyrifera Pinus strobus Picea glauca Rosa acicularis ssp. sayi Viburnum cassinoidies Aralia nudicaulis Salix spp. Gaultheria procumbens Lycopodium clavatum Dryopteris carthusiana Oxalis acetosella Betula alleghaniensis

#### Appendix 20. Photographs



1. 498 year-old Eastern White Cedar



3. 139 cm white pine snag, Temagami Island



5. Four Fire Scars on a Snag, Island 1088



2. Old Mining Pit, Island 1088



4. View from High Rock Island lookout



6. Five Fire Scars on a Snag, High Rock Island



7. Stump Survey, Cattle Island



9. Old Growth on Red Pine Island



8. Cribs Near Site of Stump Survey



10. Coarse Woody Debris, Red Pine Island



11. Bear Claw Marks, Island 388



13. White Birch, 94 cm DBH



12. Loon Nesting Habitat, Beaver Island



14. Coring a Tree on Temagami Island



15. Pileated Woodpecker Holes in White Pine



16. Supercanopy of Red Pine, Island 1088